Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.5.317

Performance Improvement of Flexible Thin Film Si Solar Cells using Graphite Substrate  

Lim, Gyeong-yeol (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Jun-sik (Photovoltaic Laboratory, Korea Institute of Energy Research)
Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.5, 2019 , pp. 317-321 More about this Journal
Abstract
We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.
Keywords
graphite; plasma-enhanced chemical vapor deposition; thin film silicon solar cell; flexible solar cell; nano-crystalline silicon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001).   DOI
2 J. Wang and S. Kaskel, J. Mater. Chem., 22, 23710 (2012).   DOI
3 P. Simon and Y. Gogotsi, Acc. Chem. Res., 46, 1094 (2012).   DOI
4 M. F. Bhopal, A. Rehman, D. W. Lee and S. H. Lee, J. Korean Phys. Soc., 66, 730 (2015).   DOI
5 Z. Shi and A. Jayatissa, Materials, 11, 36 (2018).   DOI
6 M. Czerniak-Reczulska, A. Niedzielska and A. Jedrzejczak, Adv. Mater. Sci., 15, 67 (2015).
7 X. Li, Z. Lv and H. Zhu, Adv. Mater., 27, 6549 (2015).   DOI
8 W. Xu, S. Choi, and M. G. Allen, in Proc. 23rd IEEE Int. Conf. MEMS, (Hong Kong, 2010), p. 1187.
9 Y. J. Cho, D. W. Lee, J. S. Cho, and H. S. Chang (in Korean), J. Korean Inst. Electr. Electron. Mater. Eng., 29, 505 (2016).   DOI
10 Z. E. Smith and S. Wagner, Phys. Rev. Lett., 59, 688 (1987).   DOI
11 C. Boehme, F. Friedrich, T. Ehara and K. Lips, Thin Solid Films, 487, 132 (2005).   DOI
12 M. Fehr, A. Schnegg, C. Teutloff, R. Bittl, O. Astakhov and F. Finger, Phys. Status Solidi A, 207, 552 (2010).   DOI
13 N. Wyrsch, C. Droz, L. Feitknecht, P. Torres, E. Vallat- Sauvain, J. Bailat and A. Shah, J. Non-Cryst. Solids, 299, 390 (2002).   DOI
14 Y. Yuan, W. Zhao, J. Ma, Z. Yang, W. Li and K. Zhang, Surf. Coat. Technol., 320, 362 (2017).   DOI
15 J. S. Cho, E. S. Jang, D. Lim, J. H. Park and B. H. Choi, Sol. Energy, 159, 444 (2018).   DOI
16 S. A. Filonovich, P. Alpuim, L. Rebouta, J. E. Bouree and Y. M. Soro, J. Non-Cryst. Solids, 354, 2376 (2008).   DOI
17 Z. Li, X. Zhang and G. Han, Phys. Status Solidi A, 207, 144 (2010).   DOI
18 C. H. Lee, A. Sazonov and A. Nathan, Appl. Phys. Lett., 86, 222106 (2005).   DOI