• Title/Summary/Keyword: J project

Search Result 569, Processing Time 0.029 seconds

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Development of Pre-Service and In-Service Information Management System (iSIMS) (원전 가동전/중 검사정보관리 시스템 개발)

  • Yoo, H.J.;Choi, S.N.;Kim, H.N.;Kim, Y.H.;Yang, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • The iSTMS is a web-based integrated information system supporting Pre-Service and In-Service Inspection(PSI/ISI) processes for the nuclear power plants of KHNP(Korea Hydro & Nuclear Power Co. Ltd.). The system provides a full spectrum coverage of the inspection processes from the planning stage to the final report of examination in accordance with applicable codes, standards, and regulatory requirements. The major functions of the system includes the inspection planning, examination, reporting, project control and status reporting, resource management as well as objects search and navigation. The system also provides two dimensional or three dimensional visualization interface to identify the location and geometry of components and weld areas subject to examination in collaboration with database applications. The iSIMS is implemented with commercial software packages such as database management system, 2-D and 3-D visualization tool, etc., which provide open, updated and verified foundations. This paper describes the key functions and the technologies for the implementation of the iSIMS.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin;Kim, Yonggi;Lee, Chung-Uk;Lee, Hee-Won;Pak, Soojong;Shim, Hyunjin;Sung, Hyun-Il;Kang, Wonseok;Kim, Taewoo;Heo, Jeong-Eun;Hinse, Tobias C.;Ishiguro, Masateru;Lim, Gu;Ly, Cuc T.K.;Paek, Gregory S.H.;Seo, Jinguk;Yoon, Joh-na;Woo, Jong-Hak;Ahn, Hojae;Cho, Hojin;Choi, Changsu;Han, Jimin;Hwang, Sungyong;Ji, Tae-Geun;Lee, Seong-Kook J.;Lee, Sumin;Lee, Sunwoo;Kim, Changgon;Kim, Dohoon;Kim, Joonho;Kim, Sophia;Jeong, Mankeun;Park, Bomi;Paek, Insu;Kim, Dohyeong;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.3
    • /
    • pp.89-102
    • /
    • 2021
  • Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.

A Study on the Development of H2 Fuel Cell Education Platform: Meta-Fuelcell (연료전지 교육 플랫폼 Meta-Fuelcell 개발에 관한 연구)

  • Duong, Thuy Trang;Gwak, Kyung-Min;Shin, Hyun-Jun;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.29-35
    • /
    • 2022
  • This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.

Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses

  • Lee, Imchang;Podolich, Olga;Brenig, Bertram;Tiwari, Sandeep;Azevedo, Vasco;de Carvalho, Daniel Santana;Uetanabaro, Ana Paula Trovatti;Goes-Neto, Aristoteles;Alzahrani, Khalid J.;Reva, Oleg;Kozyrovska, Natalia;de Vera, Jean-Pierre;Barh, Debmalya;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.967-975
    • /
    • 2022
  • Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.

Prospect of Sustainable Organic Tea Farming in Lwang, Kaski, Nepa (네팔 르왕지역의 지속적 유기농차 재배 방향)

  • Chang, K.J.;Huang, D.S.;Park, C.H.;Jeon, U.S.;Jeon, S.H.;Binod, Basnet.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.12 no.1
    • /
    • pp.137-150
    • /
    • 2010
  • Traditionally, like many people in mountain region of the Himalaya, the Lwang communities depend on mix of subsistence agriculture, animal husbandry, and seasonal migrant labor for their livelihoods. These traditional systems are characterized by low productivity, diverse use of available natural resources (largely for home consumption), limited markets, and some aversion for innovation. The potential to generate wealth through commerce has largely been untapped by these mountain residents and thus is undervalued in local and national economies. Introduction of organic tea farming is a part of Lwang community's several initiatives to break the vicious poverty cycle Annapurna Conservation Area Project (ACAP) played facilitating roles in all their efforts since beginning. In five years, the tea plantation emerged as a new means for secured a livelihood. This study aims to analyze the current practices in tea farming both in terms of farm management and soil nutrient status(technical) and the prosperity of the tea farmers (social). The technical aspect covers the soil and tea leaf analysis of various nutrients contents in the soil and tea leaf. Originally, the technical aspect of the study was not planned but later during the consultation with the advisor it was taken into consideration which added value to the research study. The sample were collected from different locations and analyzed on the field itself. The other part of the study i.e. the social aspect was done through questionnaire survey and focus group discussion. the tea farming provided them not only a new opportunity but also earned an identity in the region. This initiative was undertaken as a piloting measure. Now that the tea is in production with processing unit established locally, more serious consideration has to be given for better yield and economic prosperity. This research finding will help the community to analyze their efforts and make correction measures in tea garden management and application of fertilizer. It is also expected to fill up the gaps of knowledge and information required to reduce economic stresses and enhance capacity of farmers to make the tea farming a sustainable and beneficial business. The findings are expected to Sustainability of organic tea farming has direct impacts on biodiversity conservation compared to the other traditional farming practices that are more resource intensive. The study will also contribute to identify key action points required for reducing poverty while conserving environment and enhancing livelihoods

MAGIC: GALILEO and SBAS Services in a Nutshell

  • Zarraoa, N.;Tajdine, A.;Caro, J.;Alcantarilla, I.;Porras, D.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.27-31
    • /
    • 2006
  • GNSS Services and Applications are today in permanent evolution in all the market sectors. This evolution comprises: ${\bullet}$ New constellations and systems, being GALILEO probably the most relevant example, but not the only one, as other regions of the world also dwell into developing their own elements (e.g. the Chinese Beidou system). ${\bullet}$ Modernisation of existing systems, as is the case of GPS and GLONASS ${\bullet}$ New Augmentation services, WAAS, EGNOS, MSAS, GRAS, GAGAN, and many initiatives from other regions of the world ${\bullet}$ Safety of Life services based on the provision of integrity and reliability of the navigation solutions through SBAS and GBAS systems, for aeronautical or maritime applications ${\bullet}$ New Professional applications, based on the unprecedented accuracies and integrity of the positioning and timing solutions of the new navigation systems with examples in science (geodesy, geophysics), Civil engineering (surveying, construction works), Transportation (fleet management, road tolling) and many others. ${\bullet}$ New Mass-market applications based on cheap and simple GNSS receivers providing accurate (meterlevel) solutions for daily personal navigation and information needs. Being on top of this evolving market requires an active participation on the key elements that drive the GNSS development. Early access to the new GNSS signals and services and appropriate testing facilities are critical to be able to reach a good market position in time before the next evolution, and this is usually accessible only to the large system developers as the US, Europe or Japan. Jumping into this league of GNSS developers requires a large investment and a significant development of technology, which may not be at range for all regions of the world. Bearing in mind this situation, MAGIC appears as a concept initiated by a small region within Europe with the purpose of fostering and supporting the development of advanced applications for the new services that can be enabled by the advent of SBAS systems and GALILEO. MAGIC is a low cost platform based on the application of technology developed within the EGNOS project (the SBAS system in Europe), which encompasses the capacity of providing real time EGNOS and, in the near future, GALILEO-like integrity services. MAGIC is designed to be a testing platform for safety of life and liability critical applications, as well as a provider of operational services for the transport or professional sectors in its region of application. This paper will present in detail the MAGIC concept, the status of development of the system within the Madrid region in Spain, the results of the first on-field demonstrations and the immediate plans for deployment and expansion into a complete SBAS+GALILEO regional augmentation system.

  • PDF

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla;S. Paranjape;U. Doll;E. Kirkby;D. Paladino
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4348-4358
    • /
    • 2022
  • The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani;Rohma Raza;Muhammad Shakil;Shakeel Sabir;Muhammad Danish
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.96-109
    • /
    • 2024
  • Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.