DOI QR코드

DOI QR Code

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani (Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology) ;
  • Rohma Raza (Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology) ;
  • Muhammad Shakil (Department of Zoology, PMAS-Arid Agriculture University Rawalpindi) ;
  • Shakeel Sabir (Department of Botany, PMAS-Arid Agriculture University Rawalpindi) ;
  • Muhammad Danish (Hagler Bailly Pakistan)
  • Received : 2023.11.06
  • Accepted : 2023.12.28
  • Published : 2024.03.31

Abstract

Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.

Keywords

Acknowledgement

National University of Sciences & Technology (NUST) student research grant.

References

  1. Ali K, Begum HA. A comparative assessment of climate change effect on some of the important tree species of Hindu-Kush Himalayas, using predictive modelling techniques. Int J Adv Res. 2015;3(5):1230-40.
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259(4):660-84. https://doi.org/10.1016/j.foreco.2009.09.001.
  3. Araujo MB, Pearson RG, Thuiller W, Erhard M. Validation of species-climate impact models under climate change. Glob Chang Biol. 2005;11(9):1504-13. https://doi.org/10.1111/j.1365-2486.2005.01000.x.
  4. Bateman BL, VanDerWal J, Williams SE, Johnson CN. Biotic interactions influence the projected distribution of a specialist mammal under climate change. Divers Distrib. 2012;18(9):861-72. https://doi.org/10.1111/j.1472-4642.2012.00922.x.
  5. Beatty CR, Cox NA, Kuzee ME. Biodiversity guidelines for forest landscape restoration opportunities assessments. Gland: IUCN; 2018.
  6. Bisht AS, Bhatt AB. Dominance and diversity studies of tree species in lesser Himalayan forest of Uttarakhand, India. Biodiversitas. 2016;17(1):70-7. https://doi.org/10.13057/biodiv/d170110.
  7. Boisvert-Marsh L, Perie C, de Blois S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere. 2014;5(7):83. https://doi.org/10.1890/ES14-00111.1.
  8. Boisvert-Marsh L, Perie C, de Blois S. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J Ecol. 2019;107(4):1956-69. https://doi.org/10.1111/1365-2745.13149.
  9. Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst. 2020;12(7):e2019MS002010. https://doi.org/10.1029/2019MS002010.
  10. Carvalho MC, Gomide LR, Santos RM, Scolforo JRS, Carvalho LMT, Mello JM. Modeling ecological niche of tree species in Brazilian tropical area. Cerne. 2017;23(2):229-40. https://doi.org/10.1590/01047760201723022308.
  11. Colangelo M, Camarero JJ, Ripullone F, Gazol A, Sanchez-Salguero R, Oliva J, et al. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest. Forests. 2018;9(4):205. https://doi.org/10.3390/f9040205.
  12. Cuong ND, Volker M, Kohl M. Facilitating objective forest land use decisions by site classification and tree growth modeling: a case study from Vietnam. IForest. 2019;12(6):542-50. https://doi.org/10.3832/ifor2945-012.
  13. Dennis R, Thomas C. Bias in butterfly distribution maps: the influence of hot spots and recorder's home range. J Insect Conserv. 2000;4(2):73-7. https://doi.org/10.1023/A:1009690919835.
  14. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.
  15. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B., Stouffer RJ, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev. 2016;9(5):1937-58. https://doi.org/10.5194/gmd-9-1937-2016.
  16. FAO. 2019 Forestry sector review: Pakistan. Islamabad: FAO; 2020. 
  17. Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D. Global Agro-ecological Zones assessment for agriculture (GAEZ 2008). Laxenburg: International Institute for Applied Systems Analysis; 2008.
  18. Gazol A, Camarero JJ. Compound climate events increase tree drought mortality across European forests. Sci Total Environ. 2022;816: 151604. https://doi.org/10.1016/j.scitotenv.2021.151604.
  19. Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8(9):993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x.
  20. Gupta A, Behl T, Panichayupakaranan P. A review of phytochemistry and pharmacology profile of Juglans regia. Obes Med. 2019;16:100142. https://doi.org/10.1016/j.obmed.2019.100142.
  21. Hassan RA, Hamdy RS. Synoptic overview of exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, mimosoid clade, Fabaceae) in Egypt. Plants (Basel). 2021;10(7):1344. https://doi.org/10.3390/plants10071344.
  22. Healey J, Hall J, Goodland T, Binggeli P, Geddes N. Invasive Woody Plants in the Tropics Research Group. 1997. http://iwpt.bangor.ac.uk/. Accessed 2 Feb 2022.
  23. Hidalgo PJ, Marin JM, Quijada J, Moreira JM. A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manage. 2008;255(1):25-34. https://doi.org/10.1016/j.foreco.2007.07.012.
  24. Hijmans RJ, Phillips S, Leathwick J, Elith J. Package 'dismo'. 2011. http://cran.r-project.org/web/packages/dismo/index.html. Accessed 28 Jun 2021.
  25. Hirsch H, Allsopp MH, Canavan S, Cheek M, Geerts S, Geldenhuys CJ, et al. Eucalyptus camaldulensis in South Africa - past, present, future. Trans R Soc S Afr. 2020;75(1):1-22. https://doi.org/10.1080/0035919X.2019.1669732.
  26. Holzmann I, Agostini I, DeMatteo K, Areta JI, Merino ML, Di Bitetti MS. Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America. Int J Primatol. 2015;36(1):18-32. https://doi.org/10.1007/s10764-014-9805-1.
  27. IPCC. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Pean C, Berger S, et al., editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021.
  28. Iverson LR, Peters MP, Prasad AM, Matthews SN. Analysis of climate change impacts on tree species of the eastern US: results of DISTRIB-II modeling. Forests. 2019;10(4):302. https://doi.org/10.3390/f10040302.
  29. Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, et al. C4MIP-the coupled climate-carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci Model Dev. 2016;9(8):2853-80. https://doi.org/10.5194/gmd-9-2853-2016.
  30. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schroder B, Lindenborn J, Reinfelder V, et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib. 2013;19(11): 1366-79. https://doi.org/10.1111/ddi.12096.
  31. Li G, Xu G, Guo K, Du S. Geographical boundary and climatic analysis of Pinus tabulaeformis in China: insights on its afforestation. Ecol Eng. 2016;86:75-84. https://doi.org/10.1016/j.ecoleng.2015.10.032.
  32. Li G, Zhang X, Huang J, Wen Z, Du S. Afforestation and climatic niche dynamics of black locust (Robinia pseudoacacia). For Ecol Manage. 2018;407:184-90. https://doi.org/10.1016/j.foreco.2017.10.019.
  33. Li Y, Li M, Li C, Liu Z. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests. 2020;11(3):302. https://doi.org/10.3390/f11030302.
  34. Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of species distributions. Ecography. 2005;28(3):385-93. https://doi.org/10.1111/j.0906-7590.2005.03957.x.
  35. Mahatara D, Acharya AK, Dhakal BP, Sharma DK, Ulak S, Paudel P. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fenn. 2021;55(4):10441. https://doi.org/10.14214/sf.10441.
  36. Majumder M, Chackraborty T, Datta S, Chakraborty R, Barman RN. Development of a neuro-fuzzy system for selection of tree species for afforestation purpose. In: Majumder M, Barman R, editors. Application of nature based algorithm in natural resource management. Dordrecht: Springer; 2013. p. 317-30.
  37. McDonald MW, Brooker MIH, Butcher PA. A taxonomic revision of Eucalyptus camaldulensis (Myrtaceae). Aust Syst Bot. 2009;22(4):257-85. https://doi.org/10.1071/SB09005.
  38. Meng J, Li M, Guo J, Zhao D, Tao J. Predicting suitable environments and potential occurrences for Cinnamomum camphora (Linn.) Presl. Forests. 2021;12(8):1126. https://doi.org/10.3390/f12081126.
  39. Minhas PS, Singh YP, Tomar OS, Gupta RK, Gupta RK. Effect of saline irrigation and its schedules on growth, biomass production and water use by and Dalbergia sissoo in a highly calcareous soil. J Arid Environ. 1997;36(1):181-92. https://doi.org/10.1006/jare.1996.0224.
  40. Morales NS, Fernandez IC, Baca-Gonzalez V. MaxEnt's parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ. 2017;5:e3093. https://doi.org/10.7717/peerj.3093.
  41. Mukhtar I, Bajwa R, Nasim G. Major constraints on shisham (Dalbergia sissoo) plantations and pathological debate on dieback disease in Punjab, Pakistan. J For Res. 2015;26(2):267-71. https://doi.org/10.1007/s11676-015-0081-5.
  42. Nunez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, et al. Connectivity planning to address climate change. Conserv Biol. 2013;27(2):407-16. https://doi.org/10.1111/cobi.12014.
  43. O'Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Change. 2017;42:169-80. https://doi.org/10.1016/j.gloenvcha.2015.01.004.
  44. Paz-Dyderska S, Jagodzinski AM, Dyderski MK. Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Reg Environ Change. 2021;21(1):18. https://doi.org/10.1007/s10113-020-01745-z.
  45. Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JP, Fernandez-Manjarres JF, et al. Scenarios for global biodiversity in the 21st century. Science. 2010;330(6010):1496-501. https://doi.org/10.1126/science.1196624.
  46. Phillips SJ. A brief tutorial on Maxent. 2017. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 20 Apr 2021.
  47. Pistorius T, Carodenuto S, Wathum G. Implementing forest landscape restoration in Ethiopia. Forests. 2017a;8(3):61. https://doi.org/10.3390/f8030061.
  48. Pistorius T, Freiberg H. From target to implementation: perspectives for the international governance of forest landscape restoration. Forests. 2014;5(3):482-97. https://doi.org/10.3390/f5030482.
  49. Pistorius T, Reinecke S, Carrapatoso A. A historical institutionalist view on merging LULUCF and REDD+ in a post-2020 climate agreement. Int Environ Agreem. 2017b;17(5):623-38. https://doi.org/10.1007/s10784-016-9330-0.
  50. Poortinga W, Whitmarsh L, Steg L, Bohm G, Fisher S. Climate change perceptions and their individual-level determinants: a cross-European analysis. Glob Environ Change. 2019;55:25-35. https://doi.org/10.1016/j.gloenvcha.2019.01.007.
  51. Puri S, Singh S, Kumar A. Growth and productivity of crops in association with an Acacia nilotica tree belt. J Arid Environ. 1994;27(1):37-48. https://doi.org/10.1006/jare.1994.1043.
  52. Rahman IU, Khan N, Ali K, Ahmad S. Vegetation-environment relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J For Res. 2020;31(1):185-95. https://doi.org/10.1007/s11676-018-0864-6.
  53. Roman-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci U S A. 2020;117(8):4211-7. https://doi.org/10.1073/pnas.1913007117.
  54. Sabir M, Ali Y, Khan I, Salman A. Plants species selection for afforestation: a case study of the billion tree tsunami project of Pakistan. J Sustain For. 2022;41(6):537-49. https://doi.org/10.1080/10549811.2020.1830802.
  55. Sangha KK, Jalota RK. Value of ecological services of exotic Eucalyptus tereticornis and native Dalbergia sissoo tree plantations of northwestern India. Conserv Soc. 2005;3(1):92-109.
  56. Schulz JJ, Schroder B. Identifying suitable multifunctional restoration areas for Forest Landscape Restoration in Central Chile. Ecosphere. 2017;8(1):e01644. https://doi.org/10.1002/ecs2.1644.
  57. Shah MH, Mukhtar I, Khan SN. Medicinal importance and association of pathological constraints with Dalbergia sissoo. Pak J Phytopathol. 2010;22(2):135-8.
  58. Shah SK, Bhattacharyya A, Chaudhary V. Climatic influence on radial growth of Pinus wallichiana in Ziro Valley, Northeast Himalaya. Curr Sci. 2009;96(5):697-702.
  59. Sharma M, Sharma M, Sharma M. A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.). Proc Indian Natl Sci Acad. 2022;88(4):601-16. https://doi.org/10.1007/s43538-022-00119-9.
  60. Sheikh MA, Kumar M, Todaria NP, Bhat JA, Kumar A, Pandey R. Contribution of Cedrus deodara forests for climate mitigation along altitudinal gradient in Garhwal Himalaya, India. Mitig Adapt Strateg Glob Chang. 2021;26(1):5. https://doi.org/10.1007/s11027-021-09941-w.
  61. Siddiqui KM, Sheikh MI, Rehman S. Selection trials of Populus ciliata Wall. in Pakistan. Pak J For. 1986;36(1):29-34.
  62. Siddiqui MF, Shaukat SS, Ahmed M, Khan N, Khan IA. Vegetation-environment relationship of conifer dominating forests of moist temperate belt of Himalayan and Hindukush regions of Pakistan. Pak J Bot. 2013;45(2):577-92.
  63. Sillero N, Arenas-Castro S, Enriquez-Urzelai U, Vale CG, Sousa-Guedes D, Martinez-Freiria F, et al. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Modell. 2021;456:109671. https://doi.org/10.1016/j.ecolmodel.2021.109671.
  64. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. Climate change 2013: the physical science basis. Working Group I contribution of to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.
  65. Swierszcz S, Nobis M, Swacha G, Nowak S, Nowak A. Syntaxonomic classification of forb steppes and related vegetation of subalpine and alpine belts in the Pamir-Alai Mountains (Tajikistan, Middle Asia). Veg Classif Surv. 2023;4:291-317. https://doi.org/10.3897/VCS.102634.
  66. Taylor J, Smit N, Jewitt D. Predictive modelling of the potential future distribution of Vachellia nilotica within the KwaZulu-Natal province of South Africa. Afr J Range Forage Sci. 2018;35(2):73-80. https://doi.org/10.2989/10220119.2018.1480525.
  67. Tybirk K. Flowering, pollination and seed production of Acacia nilotica. Nord J Bot. 1989;9(4):375-81. https://doi.org/10.1111/j.1756-1051.1989.tb01014.x.
  68. UN Climate Summit 2014. New York Declaration on Forests Declaration and Action Agenda. New York: United Nations; 2014.
  69. Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ. 2020;733:137782. https://doi.org/10.1016/j.scitotenv.2020.137782.
  70. World Wide Fund for Nature Pakistan. Third party monitoring of the Billion Trees Afforestation Project in Khyber Pakhtunkhwa. 2017. https://d2ouvy59p0dg6k.cloudfront.net/downloads/btap_monitoring_ report_phase_ii.pdf. Accessed 4 Feb 2021.
  71. Zhu Y, Wei W, Li H, Wang B, Yang X, Liu Y. Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob Ecol Conserv. 2018;16:e00501. https://doi.org/10.1016/j.gecco.2018.e00501.