DOI QR코드

DOI QR Code

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Yonggi (Dept. of Astronomy & Space Science, Chungbuk National University) ;
  • Lee, Chung-Uk (Korea Astronomy and Space Science Institute) ;
  • Lee, Hee-Won (Department of Astronomy and Space Science, Sejong University) ;
  • Pak, Soojong (School of Space Research, Kyung Hee University) ;
  • Shim, Hyunjin (Department of Earth Science Education, Kyungpook National University) ;
  • Sung, Hyun-Il (Korea Astronomy and Space Science Institute) ;
  • Kang, Wonseok (National Youth Space Center) ;
  • Kim, Taewoo (National Youth Space Center) ;
  • Heo, Jeong-Eun (Gemini Observatory/NSF's National Optical-Infrared Astronomy Research Laboratory) ;
  • Hinse, Tobias C. (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Ishiguro, Masateru (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Lim, Gu (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Ly, Cuc T.K. (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Paek, Gregory S.H. (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Seo, Jinguk (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Yoon, Joh-na (Chungbuk National University Observatory) ;
  • Woo, Jong-Hak (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Ahn, Hojae (School of Space Research, Kyung Hee University) ;
  • Cho, Hojin (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Choi, Changsu (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Han, Jimin (School of Space Research, Kyung Hee University) ;
  • Hwang, Sungyong (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Ji, Tae-Geun (School of Space Research, Kyung Hee University) ;
  • Lee, Seong-Kook J. (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Sumin (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Lee, Sunwoo (School of Space Research, Kyung Hee University) ;
  • Kim, Changgon (School of Space Research, Kyung Hee University) ;
  • Kim, Dohoon (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, Joonho (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Sophia (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Jeong, Mankeun (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Park, Bomi (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Paek, Insu (SNU Astronomy Research Center, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Dohyeong (Department of Earth Sciences, Pusan National University) ;
  • Park, Changbom (Korea Institute for Advanced Study)
  • Received : 2021.01.29
  • Accepted : 2021.04.28
  • Published : 2021.06.30

Abstract

Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.

Keywords

Acknowledgement

We thank the anonymous referee for careful reading of the manuscript and useful suggestions. This research was supported by the Korea Astronomy and Space Science Institute under the R&D program (Project No. 2020-1-600-05) supervised by the Ministry of Science and ICT (MSIT), and the National Research Foundation of Korea (NRF) Grant No. 2020R1A2C3011091, funded by MSIT. DK acknowledges support by the National Research Foundation of Korea (NRF) grant (No. 2021R1C1C1013580) funded by the Korean government (MSIT). SL acknowledges the support from the National Research Foundation of Korea (NRF) grant (No. 2020R1I1A1A01060310) funded by the Korean government (MSIT). TCH acknowledges financial support from the National Research Foundation (No. 2019R1I1A1A01059609). We thank the staff at the iTelescope.Net, DeepSkyChile, ObsTech, SAO, CBNUO, DOAO, LOAO, SOAO, and McDonald observatories for their help with the observations and maintenance of the facilities. This research made use of the data taken with LOAO and SOAO operated by the Korea Astronomy and Space Science Institute (KASI), CBNUO of Chungbuk National University, DOAO of National Youth Space Center (NYSC), the McDonald Observatory, and the Siding Spring Observatory.

References

  1. Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017a, The IceCube Realtime Alert System, Astropart. Phy., 92, 30 https://doi.org/10.1016/j.astropartphys.2017.05.002
  2. Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017b, Multiwavelength Follow-up of a Rare IceCube Neutrino Multiplet, A&A, 607, 115
  3. Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017c, Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube, ApJ, 846, 136 https://doi.org/10.3847/1538-4357/aa8508
  4. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, Multi-messenger Observations of a Binary Neutron Star Merger, ApJL, 848, 12 https://doi.org/10.3847/1538-4357/aa8b77
  5. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, PhRvL, 119, 1101
  6. Abbott, R., Abbott, T. D., Abraham, F., et al. 2020, GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv:2010.14527
  7. Agayva, S., Alishov, S., Antier, S., et al. 2020, Grandma: A Network to Coordinate Them All, arXiv:2008.03962
  8. Ahn, H., Shim, H., Pak, S., & Kang, W. 2021 Flux Calibration Based on Narrow Band Imaging Observations, AJ, in preparation
  9. Akras, S., Guzman-Ramirez, L., Leal-Ferreira, M. L., & Ramos-Larios, G. 2019, A Census of Symbiotic Stars in the 2MASS, WISE, and Gaia Surveys, ApJS, 240, 21 https://doi.org/10.3847/1538-4365/aaf88c
  10. Allen, D. A. 1979, Symbiotic Stars at Optical Infrared and Radio Wavelengths, Proc. IAU Coll., 46, 125
  11. Angeloni, R., Goncalves, D. R., Akras, S., et al. 2019, RAMSES II: RAMan Search for Extragalactic Symbiotic Stars - Project Concept, Commissioning, and Early Results from the Science Verification Phase, AJ, 157, 156 https://doi.org/10.3847/1538-3881/ab0cf7
  12. Ansoldi, S., Antonelli, L. A., Arcaro, C., et al. 2018, The Blazar TXS 0506+056 Associated with a High-energy Neutrino: Insights into Extragalactic Jets and Cosmic-Ray Acceleration, ApJL, 863, L10 https://doi.org/10.3847/2041-8213/aad083
  13. Arcavi, I., Hosseinzadeh, G., Howell, D. A., et al. 2017, Optical Emission from a Kilonova Following a Gravitational-wave-detected Neutron-star Merger, Nature, 551, 64 https://doi.org/10.1038/nature24291
  14. Bai, Y., Liu, J., & Wang, S. 2015, An Updated Ultraviolet Catalog of GALEX Nearby Galaxies, ApJS, 220, 6 https://doi.org/10.1088/0067-0049/220/1/6
  15. Belloni, D., Miko lajewska, J. I lkiewicz, K., et al. 2020, On the Absence of Symbiotic Stars in Globular Clusters, MNRAS, 496, 3436 https://doi.org/10.1093/mnras/staa1714
  16. Blandford, R. D., & McKee, C. F. 1982, Reverberation Mapping of the Emission Line Regions of Seyfert Galaxies and Quasars, ApJ, 255, 419 https://doi.org/10.1086/159843
  17. Borucki, W. J., Koch, D., Basri, G., et al. 2010, Kepler Planet-Detection Mission: Introduction and First Results, Science, 327, 977 https://doi.org/10.1126/science.1185402
  18. Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, Las Cumbres Observatory Global Telescope Network, PASP, 125, 1031 https://doi.org/10.1086/673168
  19. Castro-Tirado, A. J., Soldan, J., Bernas, M., et al. 1999, The Burst Observer and Optical Transient Exploring System (BOOTES), A&AS, 138, 583 https://doi.org/10.1051/aas:1999362
  20. Charbonneau, D., Brown, T. M., Noyes, R. W., 2002, Detection of an Extrasolar Planet Atmosphere, ApJ, 568, 377 https://doi.org/10.1086/338770
  21. Cho, H., Woo, J.-H., Hodges-Kluck, E., et al. 2020, Variability and the Size-Luminosity Relation of the Intermediate-mass AGN in NGC 4395, ApJ, 892, 93 https://doi.org/10.3847/1538-4357/ab7a98
  22. Choi, C., & Im, M. 2017, Seoul National University Camera II (SNUCAM-II): The New SED Camera for the Lee Sang Gak Telescope (LSGT), JKAS, 50, 71
  23. Coulter, D. A., Foley, R. J., Kilpatrick, C. D., et al. 2017, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source, Science, 358, 1556 https://doi.org/10.1126/science.aap9811
  24. Deming, D., Seager, S., & Richardson, L. J., 2005, Infrared Radiation from an Extrasolar Planet, Nature, 434, 740 https://doi.org/10.1038/nature03507
  25. Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, First Results from the Catalina Real-Time Transient Survey, ApJ, 696, 870 https://doi.org/10.1088/0004-637X/696/1/870
  26. Gaudi, B. S., & Winn, J. N., 2007, Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect, ApJ, 655, 550 https://doi.org/10.1086/509910
  27. Gorbovskoy, E. S., Lipunov, V. M., Kornilov, V. G., et al. 2013, The MASTER-II Network of Robotic Optical Telescopes. First results, Astron. Rep., 57, 233 https://doi.org/10.1134/S1063772913040033
  28. Halzen, F. 2017, High-energy Neutrino Astrophysics, NatPh, 13, 232
  29. Han, W., Mack, P., Lee, C.-U., et al. 2005, Development of a 1-m Robotic Telescope System, PASJ, 57, 821 https://doi.org/10.1093/pasj/57.5.821
  30. Hinse, T. C., Han, W., Yoon, J.-N., et al. 2015, Photometric Defocus Observations of Transiting Extrasolar Planets, JASS, 32, 21.
  31. Holman, M. J., & Murray, N. W., 2005, The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets, Science, 307, 1288 https://doi.org/10.1126/science.1107822
  32. Hong, J., Im, M., Kim, M., & Ho, L. C. 2015, Correlation between Galaxy Mergers and Luminous Active Galactic Nuclei, ApJ, 804, 34 https://doi.org/10.1088/0004-637X/804/1/34
  33. Hwang, S., Im, M., Taak, Y. C. 2021, Medium-band Observation of the Neutrino Emitting Blazar, TXS 0506+056, ApJ, 908, 113 https://doi.org/10.3847/1538-4357/abcd9a
  34. IceCube Collaboration 2013, Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science, 342, 1 https://doi.org/10.1126/science.1242856
  35. IceCube Collaboration, Aartsen, M. G., Ackermann, M., et al. 2018, Multimessenger Observations of a Flaring Blazar Coincident with High-energy Neutrino IceCube-170922A, Science, 361, 1378
  36. Im, M., Choi, C., & Kim, K. 2015a, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207
  37. Im, M., Choi, C., Yoon, S.-C., et al. 2015b, The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-heated Cooling Emission and Constraints on SN Ia Progenitor System, ApJS, 221, 22 https://doi.org/10.1088/0067-0049/221/1/22
  38. Im, M., Ko, J., Cho, Y., et al. 2010, Seoul National University 4K×4K Camera (SNUCAM) for Maidanak Observatory, JKAS, 43, 75
  39. Im, M., Yoon, Y., Lee, S.-K., et al. 2017b, Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817, ApJL, 849, 16 https://doi.org/10.3847/1538-4357/aa8d6c
  40. Im, M., Choi, C., Hwang, S., et al. 2019, Intensive Monitoring Survey of Nearby Galaxies (IMSNG), JKAS, 52, 11
  41. Im, M., Kim, J., & Paek, S. H. 2020, GECKO: Gravitational-wave EM Counterpart Korean Observatory, Proceedings of the Yamada Conference LXXI: Gamma-ray Bursts in the Gravitational Wave Era 2019, Yokohama
  42. Ishiguro, M., Kurdao, D., Hanayama, H., et al. 2015, Dust from Comet 209P/LINEAR during its 2014 Return: Parent Body of a New Meteor Shower, the May Camelopardalids, ApJ, 798, 34
  43. Itoh, R., Fukazawa, Y., Tanaka, Y., et al. 2013, Dense Optical and Near-infrared Monitoring of CTA 102 during High State in 2012 with OISTER: Detection of Intra-night "Orphan Polarized Flux Flare", ApJ, 768, 24 https://doi.org/10.1088/0004-637X/768/1/24
  44. Jang, M., Im, M., Lee, I., et al. 2011, Dust Properties in the Afterglow of GRB 071025 at z ~ 5, ApJL, 2011, 741 L20 https://doi.org/10.1088/2041-8205/741/1/L20
  45. Jewitt, D., Kim, Y., Luu, J., et al. 2019, Episodically Active Asteroid 6478 Gault, ApJL, 876, L19 https://doi.org/10.3847/2041-8213/ab1be8
  46. Jewitt, D., Agarwal, J., Li, J., et al. 2017, Anatomy of an Asteroid Breakup: The Case of P/2013 R3, AJ, 153, 223. https://doi.org/10.3847/1538-3881/aa6a57
  47. Ji, T.-G., Byeon, S., Lee, H.-I., et al. 2021, Development of Kyung Hee University Automatic Observing Software (KAOS) for Small-Sized Observing System, PASP, in preparation
  48. Kadler, M., Krauss, F., Mannheim, K., et al. 2016, Coincidence of a High-fluence Blazar Outburst with a PeV-energy Neutrino Event, Nature Physics, 12, 807 https://doi.org/10.1038/nphys3715
  49. Kang, W., Kim, T., Kwon, S.-G., et al. 2016, Preliminary Result of Exoplanet Transit Observation by NYSC 1 m Telescope, 2016, KAS Spring Meeting, poster presentation, Seoul.
  50. Kasen, D. 2010, Seeing the Collision of a Supernova with Its Companion Star, ApJ, 708, 1025 https://doi.org/10.1088/0004-637X/708/2/1025
  51. Kasliwal, M. M., Cannella, C., Bagdasaryan, A., et al. 2019, The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy, PASP, 131, 38003 https://doi.org/10.1088/1538-3873/aafbc2
  52. Kenyon, S. J. 1986, The Symbiotic Stars (New York: Cambridge Univ. Press)
  53. Kim, C.-H., Song, M.-H., Yoon, J.-N., et al., 2014, BD Andromedae: A New Short-period RS CVn Eclipsing Binary Star with a Distant Tertiary Body in a Highly Eccentric Orbit, ApJ, 788, 134 https://doi.org/10.1088/0004-637X/788/2/134
  54. Kim, J., Karouzos, M., Im, M., et al. 2018, Intra-Night Optical Variability of Active Galactic Nuclei in the Cosmos Field with the KMTNet, JKAS, 51, 89
  55. Kim, J., Im, M., Choi, C., & Hwang, S. 2019, Medium-band Photometry Reverberation Mapping of Nearby Active Galactic Nuclei, ApJ, 884, 103 https://doi.org/10.3847/1538-4357/ab40cd
  56. Kim, J., Im, M., Paek, G. S. H., et al. 2021, GECKO Optical Follow-up Observation of Three Binary Black Hole Merger Events, GW190408 181802, GW190412, and GW190503 185404, ApJ, submitted
  57. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 36
  58. Kim, Y., Ishiguro, M., & Lee, M. G. 2017, New Observational Evidence of Active Asteroid P/2010 A2: Slow Rotation of the Largest Fragment, ApJL, 842, L23 https://doi.org/10.3847/2041-8213/aa7944
  59. Kleyna, J. T., Hainaut, O. R., Meech, K. J., et al. 2019, The Sporadic Activity of (6478) Gault: A YORP-driven Event?, ApJL, 874, L20 https://doi.org/10.3847/2041-8213/ab0f40
  60. Kochanek, C. S., Shappee, B. J., Stanek, K. Z., et al. 2017, The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0, PASP, 129, 104502 https://doi.org/10.1088/1538-3873/aa80d9
  61. Kwon, Y. G., Ishiguro, M., Kwon, J., et al. 2019, Near-infrared Polarimetric Study of Near-Earth Object 252P/LINEAR: An Implication of Scattered Light from the Evolved Dust Particles, A&A, 629, A121. https://doi.org/10.1051/0004-6361/201935542
  62. Lee, I., Im, M., & Urata, Y. 2010, First Korean Observations of Gamma-Ray Burst Afterglows at Mt. Lemmon Optical Astronomy Observatory (LOAO), JKAS, 43, 95
  63. Lee, J. W., Youn, J.-H., Kim, S.-L., et al. 2012, The SubSaturn Mass Transiting Planet HAT-P-12b, AJ, 143, 95. https://doi.org/10.1088/0004-6256/143/4/95
  64. Lee, J. W., Youn, J.-H., Kim, S.-L., et al. 2011, Physical Properties of the Transiting Planetary System TrES-3, PASJ, 63, 301 https://doi.org/10.1093/pasj/63.1.301
  65. Leedjarve, L., Galis, R., Hric, L., Merc, J., & Burmeister, M. 2016, Spectroscopic View on the Outburst Activity of the Symbiotic Binary AG Draconis, MNRAS, 456, 2558 https://doi.org/10.1093/mnras/stv2807
  66. Lipunov, V. M., Gorbovskoy, E., Kornilov, V. G., et al. 2017, MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817, ApJL, 850, L1 https://doi.org/10.3847/2041-8213/aa92c0
  67. Lipunov, V. M., Krylov, A. G., Kornilov, V. G., et al. 2004, MASTER: The Mobile Astronomical System of Telescope-Robots, Astron. Nachr. 325, 580 https://doi.org/10.1002/asna.200410284
  68. Maciejewski, G., Dimitrov, D., Seeliger, M., et al. 2012, Multi-site Campaign for Transit Timing Variations of WASP-12 b: Possible Detection of a Long-period Signal of Planetary Origin, A&A, 551, 108.
  69. Mannheim, K. 1995, High-energy Neutrinos from Extragalactic Jets, Astropart. Phys., 3, 295 https://doi.org/10.1016/0927-6505(94)00044-4
  70. Meszaros, P. 2017, Astrophysical Sources of High-Energy Neutrinos in the IceCube Era, Ann. Rev. Nucl. Part. Sci., 67, 45 https://doi.org/10.1146/annurev-nucl-101916-123304
  71. Moran, S., Fraser, M., Kankare, E., et al. 2020, Spectroscopic Observation of SN 2020scc by NUTS2 (NOT Un-biased Transient Survey 2), ATel, 14002
  72. Morokuma, T., Utsumi, Y., Ohta, K., et al. 2021 Follow-up Observations for IceCube-170922A: Detection of Rapid Near-Infrared Variability and Intensive Monitoring of TXS 0506+056, PASJ, 73, 25 https://doi.org/10.1093/pasj/psaa110
  73. Munoz, D. J., & Perets, H. B., 2018, Statistical Trends in the Obliquity Distribution of Exoplanet Systems, AJ, 156, 253 https://doi.org/10.3847/1538-3881/aae7d0
  74. Nakar, E., & Sari, R. 2010, Early Supernovae Light Curves Following the Shock Breakout, ApJ, 725, 904 https://doi.org/10.1088/0004-637X/725/1/904
  75. Noebauer, U. M., Kromer, M., Taubenberger, S., et al. 2017, Early Light Curves for Type Ia Supernova Explosion Models, MNRAS, 472, 2787 https://doi.org/10.1093/mnras/stx2093
  76. O'Donovan, F. T., Charbonneau, D., Bakos, G. A., et al. ' 2007, TrES-3: A Nearby Massive Transiting Hot Jupiter in a 31 Hour Orbit, ApJ, 663, 37
  77. Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 613, 682 https://doi.org/10.1086/423269
  78. Piro, A. L., & Morozova, V. S. 2016, Exploring the Potential Diversity of Early Type Ia Supernova Light Curves, ApJ, 826, 96 https://doi.org/10.3847/0004-637X/826/1/96
  79. Piro, A. L., & Nakar, E. 2013, What Can We Learn from the Rising Light Curves of Radioactively Powered Supernovae?, ApJ, 769, 67 https://doi.org/10.1088/0004-637X/769/1/67
  80. Piro, A. L., & Nakar, E. 2014, Constraints on Shallow 56Ni from the Early Light Curves of Type Ia Supernovae, ApJ, 784, 85 https://doi.org/10.1088/0004-637X/784/1/85
  81. Rabinak, I., & Waxman, E. 2011, The Early UV/Optical Emission from Core-collapse Supernovae, ApJ, 728, 63 https://doi.org/10.1088/0004-637X/728/1/63
  82. Rakshit, S., Woo, J.-H., Gallo, E., et al. 2019, The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs, ApJ, 886, 93 https://doi.org/10.3847/1538-4357/ab49fd
  83. Reimann, R., Monitoring and Multi-Messenger Astronomy with IceCube, Galaxies, 7, 40
  84. Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Transiting Exoplanet Survey Satellite (TESS), JATIS, 1a4003
  85. Seager, S., Deming, D., Valenti, J. A., 2009, Transiting Exoplanets with JWST, arXiv:0808.1913
  86. Schmid, H. M. 1989, Identification of the Emission Bands at λλ 6830, 7088, A&A, 211, L31
  87. Schmid, H. M., Dumm, T., Murset, U., et al. 1998, High resolution Spectroscopy of Symbiotic Stars: III. Radial Velocity Curve for CD-43° 14304, A&A, 329, 986
  88. Shappee B. J., Prieto J. L., Grupe D., et al. 2014, The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617, ApJ, 788, 48 https://doi.org/10.1088/0004-637X/788/1/48
  89. Skorov, Y. V., Rezac, L., Hartogh, P., et al. 2017, Is Near-surface Ice the Driver of Dust Activity on 67P/Churyumov-Gerasimenko, A&A, 600, A142. https://doi.org/10.1051/0004-6361/201630000
  90. Soares-Santos, M., Holz, D. E., Annis, J., et al. 2017, The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera, ApJL, 848, L16 https://doi.org/10.3847/2041-8213/aa9059
  91. Stein, R., van Velzen, S., Kowalski, M., et al. 2021, A Tidal Disruption Event Coincident with a High-energy Neutrino, 2021, Nat. Astron., 5, 510 https://doi.org/10.1038/s41550-020-01295-8
  92. Tanvir, N. R., Levan, A. J., Gonzalez-Fernandez, C., et al. 2017, The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars, ApJL, 848, L27 https://doi.org/10.3847/2041-8213/aa90b6
  93. Troja, E., Piro, L., van Eerten, H., et al. 2017, The X-ray Counterpart to the Gravitational-wave Event GW170817, Nature, 551, 71 https://doi.org/10.1038/nature24290
  94. Urata, Y., Huang, K., Im, M., et al. 2009, Swift GRB GRB071010B: Outlier of the Esrcpeak-Eγ and Eiso-Esrcpeak-tsrcjet Correlations, ApJL, 706, L183 https://doi.org/10.1088/0004-637X/706/1/L183
  95. Urata, Y., Huang, K., Takahashi, S., et al. 2014, Synchrotron Self-inverse Compton Radiation from Reverse Shock on GRB 120326A, ApJ, 789, 146 https://doi.org/10.1088/0004-637X/789/2/146
  96. Valenti, S., Sand, D. J., Yang, S., et al. 2017, The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck, ApJL, 848, L24 https://doi.org/10.3847/2041-8213/aa8edf
  97. Woo, J.-H., Cho, H., Gallo, E., et al. 2019, A 10,000-solar-mass Black Hole in the Nucleus of a Bulgeless Dwarf Galaxy, Nat. Astron., 3, 755 https://doi.org/10.1038/s41550-019-0790-3
  98. Woo, J.-H., Son, D., Gallo, E., et al. 2019, Seoul National University AGN Monitoring Project. I. Strategy And Sample, JKAS, 52, 109
  99. Yu, S.-Y., Yi, H.-S., Lee, J. H., et al. 2010, Performance Improvement of Near Earth Space Survey (NESS) Wide-Field Telescope (NESS-2) Optics, JASS, 27, 153