• Title/Summary/Keyword: Iwon

Search Result 21, Processing Time 0.021 seconds

Streamflow Modeling in Data-scarce Estuary Reservoir Watershed Using HSPF (HSPF 모형과 호소 물수지를 이용한 미계측 간척 담수화호 수문모델링)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.129-137
    • /
    • 2014
  • This research presents an streamflow modeling approach in a data-scarce estuary reservoir watershed which has been suffered from high salinity irrigation water problem after completion of land reclamation project in South Korea. Since limited hydrology data was available on the Iwon estuary reservoir watershed, water balance relation of the reservoir was used to estimate runoff from upstream of the reservoir. Water balance components in the reservoir consists precipitation, inflow from upstream, discharge through sluice, and evaporation. Estimated daily inflow data, which is stream discharge from upstream, shows a good consistency with the observed water level data in the reservoir in terms of EI (0.93) and $R^2$ (0.94), and were used as observed flow data for the streamflow modeling. HSPF (Hydrological Simulation Program - Fortran) was used to simulate hydrologic response of upstream of the reservoir. The model was calibrated and validated for the periods of 2006 to 2007 and 2008 to 2009, respectively, showing that values of EI and $R^2$ were 0.89 and 0.91 for calibration period, 0.71 and 0.84 for validation period.

Assessing Temporal and Spatial Salinity Variations in Estuary Reservoir Using EFDC (염분수지 및 EFDC 모형을 이용한 간척 담수화호 염도변화모의)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.139-147
    • /
    • 2014
  • Forecasting salinity in an estuary reservoir is essential to promise irrigation water for the reclaimed land. The objective of the research was to assess salinity balance and its temporal and spatial variations in the Iwon estuary reservoir which has been issued by its high contents of salinity in spite of desalination process for four years. Seepage flows through the see dikes which could be one of possible reason of high salinity level of the reservoir was calculated based on the salinity balance in the reservoir, and used as input data for salinity modeling. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was used to simulate salinity level in the reservoir. The model was calibrated and validated based on weekly or biweekly observed salinity data from 2006 to 2010 in four different locations in the reservoir. The values of $R^2$, RMSE and RMAE between simulated and observed salinity were calculated as 0.70, 2.16 dS/m, and 1.72 dS/m for calibration period, and 0.89, 1.15 dS/m, and 0.89 dS/m for validation period, respectively, showing that simulation results was generally consistent with the observation data.

Analyses of Heating and Cooling load in Greenhouse of Protected Horticulture Complex in Taean (태안 시설원예단지의 온실 냉난방 부하 분석)

  • Suh, Won-Myung;Bae, Yong-Han;Heo, Hae-Jun;Kwak, Cheul-Soon;Lee, Suk-Gun;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • This study was conducted in the process that the basic plan of the formation of the thermal energy complex in the Iwon reclaimed land of Taean was being made. Targeting for the large-sized greenhouse to be made in this area, it examined the cooling and heating load and the amount of ventilation, and also analyzed the economic efficiency of heating. The research results are as per the below: The minimum ambient temperature of this area was measured on January 7, 2001, which was $-18.7^{\circ}C$, and the maximum ambient temperature of this area was measured on July 24, 1994, which was $36.7^{\circ}C$. The maximum heating load was 39,011 MJ/h, but the date when the maximum heating load was not consistent with the date when the minimum temperature was measured. The maximum cooling load was 88,562MJ/h, It was approximately 2.3 times of the maximum heating load, which was measured at 14:00 hours on September 4, 2000. The maximum amount of ventilation heat was 138,639MJ/h. Assuming the rate of solar heat use as 10%, 20%, 50%, and 100%, the total sum of cost-benefit would be ₩-193,450,000, ₩-634,930,000, ₩-3,372,960,000, and ₩-9,850,420,000, respectively 20 years later. The break-even point of the geothermal heat pump would be about 4 years for 10% use, about 3 years for 20% or 50% use, and approximately 6 years for 100% use. It was found that 50% use would be most advantageous. In case two systems are combined, the break-even point will be 10 years, 8 years, and 11 years respectively.

The Intertidal Macrobenthic Community along an Artificial Structure (인공구조물에 따른 조간대 대형저서동물 군집변화)

  • Yu Ok-Hwan;Lee Hyung-Gon;Lee Jae-Hac
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.spc1
    • /
    • pp.132-141
    • /
    • 2006
  • Artificial structures have been designed as pilot structures to promote the creation and restoration of tidal flats. However, little information is available as to whether such artificial construction affects the macrobenthic community structure. We monitored the variation of the macrobenthic community structure and species composition near natural and artificial structures (seaweed and a timber fence) on the tidal flats near the Iwon Dike, Korea. In total, 137 macrobenthic species were recorded during this study, predominantly crustaceans (47%), polychaetes (18%), and molluscs (27%). Polychaetes comprised over 50% of the total density, followed by gastropods (38%) and crustaceans (11%). Macrobenthic species composition in the artificial and natural areas, was initially similar, but it differed after 7 months. The gastropod Umbonium thomasi, the most dominant species, was present at both sites in the first month after the start of the experiment, but disappeared at the artificial sites within 7 months, suggesting disturbance by the environmental factors. The number of species and diversity (H') varied significantly within sites at the beginning of the experiment, but no difference was observed after 7 months. Multivariate analysis (multidimensional scaling) revealed significant differences in community structure between the artificial and the natural areas from 7 months after the start of the experiment, except from 18 to 21 months. The community structures were mainly influenced by U. thomasi. Community structure at the artificial sites was affected by environmental variables, such as carbon, COD/IL sulfide, loss of ignition, kurtosis and silt, which changed over time. We observed no significant correlations between environmental variables and the dominant species, except in the case of Spio sp. and Macrophthalmus dilatatus, suggesting that the biological interactions and temporary disturbances such as typhoon, as well as the effects of artificial structures may also be important regulating factors in this system.

Distributions of Organic Matter and Trace Metals in Sediment around a Tidal-flat Oyster Crassostrea gigas Farming Area on the Taean Peninsula, Korea (태안반도 갯벌 참굴(Crassostrea gigas) 양식장 주변 퇴적물의 유기물 및 미량금속 분포)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1014-1025
    • /
    • 2014
  • We measured the concentrations of various geochemical parameters [grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg)] in the surface sediments of two intertidal oyster Crassostrea gigas farming areas (Iwon and Mongsan tidal flats) on the Taean Peninsula, Korea, to evaluate the pollution level of organic matter and trace metals in sediment. The intertidal sediments in the study region comprise mostly sand with a mean grain size of 2.5-3.5 Ø. The concentrations of IL, COD, AVS, and trace metals in the sediment of two study regions were either similar or lower in oyster farming areas relative to non-farming areas, apparently due to biological uptake or physical and biological sediment reworking. Based on the results for the pollution evaluation of organic matter and trace metals derived from sediment quality guidelines, enrichment factor, and geoaccumulation index, our results suggest that the sediment in these two intertidal oyster farming regions is not polluted by organic matter and trace metals.

Comparison of Antimicrobial Resistance Characteristics of Bacteria Isolated from Cultured Shellfish on the West Coast of Korea (서해안 양식패류에서 분리한 세균의 항생제 내성 특성 비교)

  • Park, Bo Mi;Jeong, Yeon Gyeom;Hwang, Jin Ik;Kim, Min Ju;Oh, Eun Gyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.495-504
    • /
    • 2022
  • This study examined the antimicrobials properties of bacteria using the minimum inhibitory concentration method. The bacteria were isolated from 30 shellfish (oysters and short neck clams) collected from Jawol-myeon, Ongjin-gun, Incheon and Iwon-myeon, Taean-gun, Chungcheongnam-do, on the west coast of Korea. A total of 528 bacteria were isolated from June to October 2020 and were classified into land-originating (LB; 264 strains) and marine-originating (MB; 264 strains) bacterial groups. Of the LB strains, 10 genera were identified, of which nine were Enterobacteriaceae. All MB strains were identified as species of the genus Vibrio spp.. Antimicrobial resistance to one or more agents was observed in 77.3% of the LB strains, and 90-100% of them were resistant to ampicillin Escherichia spp. were not resistant to ampicillin. The overall multidrug resistance rate of the LB strains was 49.2%, with 85 resistance patterns. Antimicrobial resistance to one or more agents was observed in 98.1% of the MB strains, because most of the V. alginolyticus and V. parahaemolyticus strains were resistant to ampicillin. The overall multidrug resistance rate of the MB strains was 1.9% with 19 resistance patterns.

Seasonal Sedimentary Characteristics and Depositional Environments after the Construction of seawall on the Iwon Macrotidal Flat (방조제 건설 후 이원 대조차 조간대의 계절별 퇴적학적 특성 및 퇴적환경)

  • Kum, Byung-Cheol;Park, Eun-Young;Lee, Hi-Il;Oh, Jae-Kyung;Shin, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.615-628
    • /
    • 2004
  • In order to elucidate seasonal sedimentary characteristics and depositional environment after construction of seawall on macrotidal flat, a seasonal observations of surface sediments (total 450) and sedimentation rates on 4 transects have been investigated for 2 years. The eastern area of Iwon tidal flat, has been changed from semi-closed coast to open coast by construction of seawall, shows general seasonal changes similar to characteristics of open coast type, which represented both fining and bad sorted distribution due to deposition of fine sediments under low energy condition in the summer, and relatively coarser and better sorted distribution because of erosion of fine sediments in the winter. In considering angles of transects, distribution patterns of surface sediments, the northern and southern parts of eastern tidal flat are dominantly influenced by wave and tidal effects, respectively. As time goes by, the eastern tidal flat shows coarsening-trend of surface sediments caused by direct effect of tidal current, were and typhoon. Meanwhile the western area of seawall, which has been re-formed by construction seawall, is sheltered from northwesterly seasonal wind. The seasonal change pattern of western area of seawall is slightly different from that of eastern tidal flat. Mean grain size and sorting of surface sediments during spring is finer and worse than those during summer. This seasonal change pattern maybe influenced by topographic effects caused from the construction of seawall. In consideration of all result, the transport of fine sediments in the study area, which is supplied to limited sediments, shows clockwise circulation pattern that fine sediments are transported from the eastern tidal flat to the western area of seawall because of blocking of seawall in the winter and are transported reversed direction the summer. As a result, many changes have been observed in the study area after construction of seawall; however, this change is still in progress and is expected to need continuous monitoring.

The Topographical Factors Affecting the Water Quality of Iwonchon Basin (이원천 유역의 하천수질에 미치는 지형요인)

  • 이호준;방제용
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.101-108
    • /
    • 1999
  • This survey was performed from March 1993 to March 1998, in order to clarify the relationships between water quality and topographical factor. The study sites were two reservoir basins; Kaesim and Jangchan in Iwon-myon, Okchon-gun, Chungcho'ngbukdo Province. Basin shape factors of Kaesim reservoir were at 0.030∼0.210 (mean value 0.090), those of Jangchan reservoir were at 0.217∼0.452 (mean value 0.325). The mean basin shape factor of Jangchan reservoir was 3.61 times larger than that of Kaesim reservoir because its stream width was narrower and mean stream length was shorter. In the correlation between distance from the source of stream (L) and basin area (A), Iwonchon basin was calculated as L=1.44A/sup 0.6/. Circularity ratio was 17.114 in Kaesim (22% of Kum River), and 7.444 in Jangchan. Elongation ratio was 0.357 in Kaesim, 0.636 in Jangchan and 0.282 in Kum River. Precipitation summation period of Jangchan was 1.54 times slower than that of Kaesim. Rainfall reaching time in each small basin was 337.53 min. in A'(Jangchan-ri) basin of Jangchan and 49.26 min in H (Iwon-ri) basin of Kaesim. In the relationship between watershed frequency (Df) and drainage density (Dd), the regression equation was Df=0.023Dd² in Kaesim and Df=0.189Dd² in Jangchan reservoir. As slope degree increased, DO became higher (Y/sub DO/=0.19X+6.5927, r=0.8l), but COD(Y/sub COD/=-0.2092X+9.7104, r=0.52) became lower. Total nitrogen was increased with the increase of basin shape factor and circularity ratio. Ratio of B/sub OD/ to COD was 1/1.2(Y/sub BOD/ = 1.2984 X/sub COD/-3.2004, r=0.9l).

  • PDF

Influence on the Land Use Factors Affecting the Water Quality of Iwonchon Basin (토지이용이 이원천 유역의 하천수질에 미치는 영향)

  • 이호준;방제용;김용옥
    • The Korean Journal of Ecology
    • /
    • v.22 no.5
    • /
    • pp.235-240
    • /
    • 1999
  • Characterization of water quality was performed from March 1993 to March 1998, on the purpose of clarifying the relationships between water quality and land use types. The study sites were two reservoir basins; Kaesim and Jangchan in Iwon-myon, Okchon-gun, Chungcho'ngbukdo Province. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, and the relationship between water quality and land use types were investigated. BOD, SS and TKN became lower and lower from up-stream to down-stream, except for the small basin G where self-purification limit was exceeded. And water quality of Jangchan reservoir basin was worse because of fish nursery. Area below altitude 200m occupied 56% in Kaesim and 44% in Jangchan reservoir basins. Especially total phosphorous (Y/sub T-P/=0.2023X+0.0991, r=0.54) and total nitrogen increased in small basins where the proportion of cultivated and residential area was higher. The analysis of influences of pollutant discharge on water quality showed that pollution charge was very high in cultivated areas. The concentrations of pollutants were attenuated flowing into watersheds through physical, chemical, biochemical, and biological processes. The pollution level of mountain area was lower than that of cultivated areas.

  • PDF

Material Characteristics and Provenance Interpretation for Chloritic Beads from the Boseong Geoseokri and Haenam Buntori Sites, Korea (보성 거석리 및 해남 분토리 유적 출토 녹니석제 구슬의 재질특성과 원산지 해석)

  • Kim, Ji-Young;Lee, Chan-Hee;Kim, Jin-Young
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.25-37
    • /
    • 2008
  • This study focuses on identification of mineralogical and geochemical characteristics and interpretation of raw material sources for prehistoric chlorite beads excavated from Geoseokri site in Boseong and Buntori site in Haenam, Korea. These prehistoric beads consist of three grayish blue ring-shaped beads, one dark green tubular bead and one greenish black tubular bead that show acicular-columnar and fibrous microtexture. The beads are composed of $SiO_2$, $Al_2O_3$, MgO and FeO as majors and a trace amount of $K_2O$, CaO and Na_2O$. Mineral species is mostly chlorite with a small amount of quartz and feldspar. Quantitative analysis indicates that the grayish blue ring-shaped beads and the dark green tubular bead belong to clinochlore and the greenish black tubular bead does to the boundary between clinochlore and sheridantie. Chlorite is a hydrous phyllosilicate mineral and it shows various microtexture of acicular, sheeted, earthy, granular andfibrous shapes. As its hardness is 2, chlorite is easily engraved due to its softness. It has aesthetic worthy as it shows green, black and greenish gray colors and pearly to greasy luster as well. These factors would lead to the extensive use of chloritic beads as ornaments from prehistoric times. Though the mineral sources of the chlorite beads can be found in central western region of Chungnam and Iwon of Hamnam, those areas are too distant from the two relic sites. Instead, chlorite ores commonly occur as altered products in wall rock alteration zone of every hydrothermal deposit. Therefore, it is probable that raw materials of chlorite were supplied from neighboring hydrothermal environment rather than far deposits. The result needs further study to verify raw material provenance interpretation, supply, manufacture and distribution on the basis of archaeological points of view.

  • PDF