• Title/Summary/Keyword: Iterative technique

Search Result 568, Processing Time 0.035 seconds

RESOLVENT EQUATIONS TECHNIQUE FOR VARIATIONAL INEQUALITIES

  • Noor, Muhammad-Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.407-418
    • /
    • 1997
  • In this paper we establish the equivalence between the general resolvent equations and variational inequalities. This equiva-lence is used to suggest and analyze a number of iterative algorithms for solving variational inclusions. We also study the convergence criteria of the iterative algorithms. Our results include several pre-viously known results as special cases.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

Non-iterative pulse tail extrapolation algorithms for correcting nuclear pulse pile-up

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4350-4356
    • /
    • 2023
  • Radiation detection systems working at high count rates suffer from the overlapping of their output electric pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, potentially time-consuming method. The main idea of the present study is to replace the NLS technique by an integration-based non-iterative method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapolation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS techniques, but provides the shortest computation time.

Cross Borehole Tomography Using Improved Inversion and Iterative Scheme (개선된 Born 역산란과 반복계산 기법을 이용한 Cross Borehole Tomography)

  • 김정혜;김상기;박천석;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.27-38
    • /
    • 1994
  • An inversion technique, by using an improved Born inversion and an iterativeprocess in cross borehole structure, is suggested to reconstruct relative permittivity rofiles of cylindrical scatterer. The degraded image resulting from the violation of the Born conditionand the restriction of measured structure is an improved by improved Borninversion and an iterative rocess,respectively. The simulation results show that this inversion technique give betterreconstruction of original rofile distribution than a conventional Bornor an improved Born technique.

  • PDF

Existence and Uniqueness of Solutions of Fractional Differential Equations with Deviating Arguments under Integral Boundary Conditions

  • Dhaigude, Dnyanoba;Rizqan, Bakr
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.191-202
    • /
    • 2019
  • The aim of this paper is to develop a monotone iterative technique by introducing upper and lower solutions to Riemann-Liouville fractional differential equations with deviating arguments and integral boundary conditions. As an application of this technique, existence and uniqueness results are obtained.

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

Revised Iterative Goal Programming Using Sparsity Technique on Microcomputer

  • Gen, Mitsuo;Ida, Kenichi;Lee, Sang M.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.1
    • /
    • pp.14-30
    • /
    • 1985
  • Recently, multiple criteria decision making has been well established as a practical approach to seek a satisfactory solution to a decision making problem. Goal programming is one of the most powerful MCDM tools with satisfying operational assumptions that reflect the actual decision making process in real-world situations. In this paper we propose an efficient method implemented on a microcomputer for solving linear goal programming problems. It is an iterative revised goal simplex method using the sparsity technique. We design as interactive software package for microcomputers based on this method. From some computational experiences, we can state that the revised iterative goal simplex method using the sparsity technique is the most efficient one for microcomputer for solving goal programming problems.

  • PDF