• 제목/요약/키워드: Iterative Solution Technique

검색결과 104건 처리시간 0.026초

자기동조 가중최소자승법을 이용한 AOA 측위 알고리즘 개발 (Development of an AOA Location Method Using Self-tuning Weighted Least Square)

  • 이성호;김동혁;노기홍;박경순;성태경
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.683-687
    • /
    • 2007
  • In last decades, several linearization methods for the AOA measurements have been proposed, for example, Gauss-Newton method and Closed-Form solution. Gauss-Newton method can achieve high accuracy, but the convergence of the iterative process is not always ensured if the initial guess is not accurate enough. Closed-Form solution provides a non-iterative solution and it is less computational. It does not suffer from convergence problem, but estimation error is somewhat larger. This paper proposes a Self-Tuning Weighted Least Square AOA algorithm that is a modified version of the conventional Closed-Form solution. In order to estimate the error covariance matrix as a weight, a two-step estimation technique is used. Simulation results show that the proposed method has smaller positioning error compared to the existing methods.

Development of an AOA Location Method Using Covariance Estimation

  • Lee, Sung-Ho;Roh, Gi-Hong;Sung, Tae-Kyung
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.485-489
    • /
    • 2006
  • In last decades, several linearization methods for the AOA measurements have been proposed, for example, Gauss-Newton method and closed-form solution. Gauss-Newton method can achieve high accuracy, but the convergence of the iterative process is not always ensured if the initial guess is not accurate enough. Closed-form solution provides a non-iterative solution and it is less computational. It does not suffer from convergence problem, but estimation error is somewhat larger. This paper proposes a self-tuning weighted least square AOA algorithm that is a modified version of the conventional closed-form solution. In order to estimate the error covariance matrix as a weight, two-step estimation technique is used. Simulation results show that the proposed method has smaller positioning error compared to the existing methods.

  • PDF

AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC ARROWHEAD MATRICES

  • Ali Beik, Fatemeh Panjeh;Salkuyeh, Davod Khojasteh
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.349-372
    • /
    • 2015
  • This paper concerns with exploiting an oblique projection technique to solve a general class of large and sparse least squares problem over symmetric arrowhead matrices. As a matter of fact, we develop the conjugate gradient least squares (CGLS) algorithm to obtain the minimum norm symmetric arrowhead least squares solution of the general coupled matrix equations. Furthermore, an approach is offered for computing the optimal approximate symmetric arrowhead solution of the mentioned least squares problem corresponding to a given arbitrary matrix group. In addition, the minimization property of the proposed algorithm is established by utilizing the feature of approximate solutions derived by the projection method. Finally, some numerical experiments are examined which reveal the applicability and feasibility of the handled algorithm.

APPROXIMATION OF SOLUTIONS FOR GENERALIZED WIENER-HOPF EQUATIONS AND GENERALIZED VARIATIONAL INEQUALITIES

  • Gu, Guanghui;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.465-472
    • /
    • 2010
  • The purpose of this article is to introduce a new generalized class of the Wiener-Hopf equations and a new generalized class of the variational inequalities. Using the projection technique, we show that the generalized Wiener-Hopf equations are equivalent to the generalized variational inequalities. We use this alternative equivalence to suggest and analyze an iterative scheme for finding the solution of the generalized Wiener-Hopf equations and the solution of the generalized variational inequalities. The results presented in this paper may be viewed as significant and improvement of the previously known results. In special, our results improve and extend the resent results of M.A. Noor and Z.Y.Huang[M.A. Noor and Z.Y.Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput.(2007), doi:10.1016/j.amc.2007.02.117].

접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석 (Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector)

  • Lee, Kisu;Kim, Bang-Won
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.305-319
    • /
    • 2000
  • 본 논문에서는 대변형 비선형 변형체의 마찰 접촉 문제의 해법을 제시하였다. 접촉 가능 점에서 접촉조건을 접촉오차 벡터를 이용하여 표시하였으며, 이러한 접촉오차 벡터를 0으로 단조 감소시키기 위하여 반복계산법을 사용하였다. 각 반복계산은 2개의 단계로 구성되어 있다 : 첫 단계에서는 이미 구해진 해의 기하학적 모양에서 얻어지는 접촉오차 벡터를 이용하여 접촉력을 수정하고, 두 번째 단계에서는 첫 단계의 접촉력을 이용하여 평형방정식을 풀어서 변위 및 접촉오차를 계산하는 것이다. 본 반복계산법에 의하여 정확한 해를 얻을 수 있음을 설명하였으며, 강소성 막 및 비선형 탄성보를 사용하여 예제계산을 수행하였다.

  • PDF

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS IN BANACH SPACES

  • Gou, Haide;Li, Yongxiang
    • 대한수학회지
    • /
    • 제57권1호
    • /
    • pp.61-88
    • /
    • 2020
  • In this paper, we investigate the existence of mild solutions for a class of fractional impulsive evolution equation with periodic boundary condition by means of the method of upper and lower solutions and monotone iterative method. Using the theory of Kuratowski measure of noncompactness, a series of results about mild solutions are obtained. Finally, two examples are given to illustrate our results.

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.

에너지 감쇠역을 포함하는 파랑장에 대한 반복기법의 적용 (Application of Iterative Procedure to the wave Field with Energy Dissipation Area)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.120-127
    • /
    • 1998
  • An Elliptic model for calculating the combined refraction/diffraction of monochromatic linear waves is developed, including a term which allows for the dissipation of wave energy. Conjugate gradient method is employed as a solution technique. Wave height variations are calculated for localized circular and rectangular dissipation areas. It is shown that the numerical results agree very well with analytical solution in the case of circular damping region. The localized dissipation area creates a shadow region of low wave energy and the recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Non-iterative Bit Loading Algorithm for OFDM in Independent and Correlated fading

  • Manry, John W.;Nagaraj, Santosh
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.163-175
    • /
    • 2014
  • This paper will focus on improving the performance of orthogonal frequency division multiplexing (OFDM) in Rayleigh fading environments. The proposed technique will use a previously published method that has been shown to improve OFDM performance in independent fading, based on ordered sub-carrier selection. Then, a simple non-iterative method for finding the optimal bit-loading allocation was proposed. It was also based on ordered sub-carrier selection. We compared both of these algorithms to an optimal bit-loading solution to determine their effectiveness in a correlated fading environment. The correlated fading was simulated using the JTC channel models. Our intent was not to create an optimal solution, but to create a low complexity solution that can be used in a wireless environment in which the channel conditions change rapidly and that require a simple algorithm for fast bit loading.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.