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Abstract 
 

In last decades, several linearization methods for the AOA measurements have been proposed, for example, Gauss-
Newton method and closed-form solution. Gauss-Newton method can achieve high accuracy, but the convergence of 
the iterative process is not always ensured if the initial guess is not accurate enough. Closed-form solution provides a 
non-iterative solution and it is less computational. It does not suffer from convergence problem, but estimation error 
is somewhat larger. This paper proposes a self-tuning weighted least square AOA algorithm that is a modified version 
of the conventional closed-form solution. In order to estimate the error covariance matrix as a weight, two-step 
estimation technique is used. Simulation results show that the proposed method has smaller positioning error 
compared to the existing methods.  
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1. Introduction  

 
Positioning methods in wireless communication systems are 

often classified into three categories; time of arrival (TOA), time 
difference of arrival (TDOA), and angle of arrival (AOA). In 
TOA method, distance between the user and sensor is determined 
from the measured one way propagation time of the signal 
traveling between them. In TDOA method, the difference in 
arrival times of a pair of sensors is measured. In AOA method, 
multi-element array antenna is required to measure the arrival 
angles of the signal from a user [1]. 

In this paper, we focus on AOA-based location method in a 
wireless communication network. The main advantage of AOA 
method is that it does not require highly accurate synchronization 
of sensors. On the other hand, sensors require regular calibration 
in order to compensate for temperature variation and antenna 
mismatches [2]. In 2D positioning, user position is defined at the 
intersection of two directional lines of azimuth. In practice, more 
than two sensors are commonly employed to reduce inaccuracies 
introduced by various error budgets, e.g., multi-path, antenna 
alignment error, thermal noise, and so on. 

Because AOA measurements are nonlinear, linearization is 
often used to estimate the user position. Several linearization 
approaches for AOA measurements have been proposed, for 
example, Gauss-Newton (GN) method [3][4] and closed-form 
(CF) solution [5]. GN method can achieve high accuracy, but the 
convergence of the iterative process is not always ensured if the 
initial guess is not accurate enough. CF solution provides a non-
iterative solution and it is less computational. It does not suffer 
from convergence problem, but the estimation error is somewhat 
larger.  

This paper proposes a self-tuning weighted least square 
(STWLS) algorithm base on CF solution. To estimate the 
weighting matrix, two-step estimation technique is used in the 
proposed method. In section 2, the classical methods to estimate 
the position from the AOA measurements are briefly reviewed. 
Afterwards, we present the formulation of the proposed STWLS 

algorithm. Section 3 includes some simulations results useful to 
compare the proposed technique to the classical ones.  

 
2. An AOA positioning algorithm using error 
covariance estimation technique 
 
2.1 Measurement model  
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 be the user position to be determined and the 
known coordinates of the i-th sensor be , i=1, 2, …, 
m, where m is the total number of the sensors. AOA is obtained 
from the array antenna of a sensor as shown in Fig. 1. Angle  
restricts the user location along a line called line of bearing 
(LOB) [2]. If there is a mismatch between the orientation of 
array antenna and the reference frame, offset angle should be 
compensated to get the azimuth that is given by  
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where is an offset of i-th sensor. 

Fig. 1. Array Antenna for AOA 

 

AOA azimuth has the following relationship in the reference 



frame. [3][4] 
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Considering the measurement noise, AOA measurement 
obtained from the path difference of the array antenna can be 
represented as  
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where is a distance between antennas and  is the 

measured path difference at antenna array.  and  are 
measurement noises in angle and in LOB respectively. If 

is assumed to be i.i.d. (independently and identically 

distributed) white Gaussian with variance of , AOA azimuth 
measurement and its noise are given by 
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2.2 Gauss-Newton method and Closed-Form solution  

The linearized equation for AOA measurements used in GN 
method is written as [3]  
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where  is a nominal user position and is nominal 
azimuth angle between the i-th sensor and nominal user position. 
The position estimate can be obtained using weighted least 
squares (WLS) that is given by 
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GN method is an iterative method. It starts with an initial 

guess and improves the estimate at each step by determining the 
local WLS solution. An initial guess close to the true solution is 
needed to avoid local minima. Selection of such a nominal point 
is not simple in practice. Moreover, convergence of the iterative 

process is not assured. It is also computationally intensive since 
WLS computation is required in each iteration. 

In the CF solution, the linearization departs from the 
rearrangement of Eq. (2) that is given by [5]  
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Eq. (7) leads to the following matrix-vector notation. 
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Using least square (LS), position estimate is given by 
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2.3 Self-tuning Weighted Least Square 

Although the CF solution is non-iterative and does not suffer 
from the convergence problem, its estimation error is somewhat 
larger because the characteristics of noise in Eq. (8) is not 
carefully considered. This paper proposes a modified version of 
the conventional CF solution using STWLS. Since the 
covariance matrix of pseudo-measurement noise in Eq. (8) is 
affected by unknown user position, two-step estimation 
technique is used to estimate the weighting matrix first. This is 
why the proposed method is named “self-tuning” WLS. 

Precisely speaking, together with noise, Eq. (8) should be 
written as  
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Eq. (10) can be written as a matrix form that is given by 
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Rewrite the component of pseudo-measurement noise as 
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where , . If is sufficiently small, 

Eq. (12) is approximated to 
ixi xxK −= iyi yyK −= ivα
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Hence, from Eq. (4) and (13), pseudo-measurement noise is 
approximated to i.i.d. white Gaussian with zero mean and the 
covariance matrix that is given by  
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where  
 

riiriii yyxxA αα sin)(cos)( −+−= .                      
 

The error covariance matrix in Eq. (14) will be used as a 
weighting matrix of WLS. However, user position 

Ψ
yx  ,  and 

azimuth angle  in Eq. (14) are unknown. In the proposed 
method, CF solution is executed first to get the estimate 

riα

T
ax ]ˆ  ,ˆ[ yx=
) used in determining Ψ . will be replaced with 
azimuth measurement . Then, the estimate of covariance 
matrix of pseudo-measurement noise can be obtained from  

 riα

if

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Ψ
22

1

22
1

ˆ0
0

00ˆ
ˆ

a

a

A

A

σ

σ

L

MO                       (15) 

 
where 
 

iiiii fyyfxxA sin)ˆ(cos)ˆ(ˆ −+−= . 
 

The final position estimate of the proposed method is solved 
using WLS that is given by 
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3. Simulation results 
 

In computer simulations, the size of work space is assumed to 
be 12 by 12m. Two cases of sensor geometry shown in Fig. 2 are 
analyzed. The sensors are located at (-6, 0), (6, 6), (6, -6) for 3-
sensor case and (-6, 6), (6, 6), (6, -6), (0, 6) for 4-sensor. σa

2 in 
Eq. (4) is set to be 10-4m. The position estimate is analyzed at 
every grid point, and the distance between two adjacent grid 
points is 1m in x- and y-axis direction. At each grid point, 100 
trials are repeated for Monte Carlo simulation to get the standard 
deviation of the estimation error and error distribution. In GN 
method, the iteration is terminated when the estimate converges 
within 10-2m.  

 

 
 
 
 
 
 
 
 
 

(a) 3-sensor                 (b) 4-sensor 
Fig. 2. Sensor geometry 

 
Three kinds of AOA location methods are compared; GN 
method, SF solution, and the proposed STWLS. Fig. 3 compares 
the standard deviation of estimation error for 3-sensor case. 
Some numerical results are given in Table 1 for detailed 
comparison. In GN method, trials diverge when the user is 
located around (- 5, -5) and (-5, 5) as shown in Fig. 3(d). 
Although GN method shows the best performance at 40% of 
work space, it shows worse performance or even diverges at the 
other region. It means that GN method is sensitive to sensor 
geometry. Compared to CF solution, the proposed method shows 
better performance at all the grid points, and the average of error 
reduction is about 8%.  

 
 
 
 
 
 
 
 

 
 
(a) CF solution             (b) Proposed STWLS 
 
 
 
 
 
 
 
 
 
(c) GN method        (d) Number of trials diverged 

in GN method. 
Fig. 3. Standard deviation for 3-sensor case 

 
Table 1. Standard deviation for 3-sensor case 

 
 
Fig. 4 shows the error distribution of the position estimate for 



3-sensor case. Size of error ellipse of the CF solution is the 
biggest compared to other methods. Ellipse size of the proposed 
method is similar to that of the GN method. Note that the 
proposed method is non-iterative and do not suffer from the 
convergence problem.  

 

 
Fig. 4. Error distribution for 3-sensor 

 
Fig. 5 shows the standard deviation of the estimation error for 

4-sensor case and some numerical results are also given in Table 
2. In this case, GN method diverges only when the user is 
location at (-5, 5) as shown in Fig. 4(d). GN method shows the 
best performance at 67% of work space including 2 grid points 
that GN method shows the same performance with the proposed 
method. Compared to 3-sensor case, this means that the 
performance of GN method is improved fast as the number of 
sensors becomes large. The proposed method shows better 
performance than CF solution at all the grid points. The average 
of error reduction is about 17%. Furthermore, the proposed 
method shows best performance at 47% of work space. As the 
number of sensors becomes large, the performance improvement 
of the proposed method is almost same to that of GN method. 
Note that there still exists the convergence problem in GN 
method. 

 
 
 
 
 
 
 
 
 
 

(a) CF solution             (b) Proposed STWLS 
 
 
 
 
 
 
 
 

(c) GN method        (d) Number of trials diverged 
in GN method. 

Fig. 5. Estimated standard deviation for 3-sensor 

 
Table 2. Estimated standard deviation for 4-sensor 

 
 

Fig. 5 shows the error distribution of the position estimate for 
4-sensor case. Size of error ellipsoid of the CF solution is the 
biggest and ellipsoid size of the proposed method is similar to 
that of the GN method if converged. Comparing Fig. 4 and Fig. 6, 
it is reconfirmed that the performance of STWLS is improved 
fast as the number of sensors increases. 

 

 
Fig. 6. Error distribution for 4-sensor 

 
4. Conclusion 
 

This paper presents a new AOA location algorithm that is the 
modified version of classical CF solution. In order to improve 
the accuracy, two-step STWLS is employed in the proposed 
method. Simulation results show that the performance of the 
proposed method is about 7~15% better than that of CF solution. 
The proposed method shows similar performance to the GN 
method if it converges. Furthermore, as the number of sensors 
increases, the estimation error of the proposed method is reduced 
as fast as that of GN method. The most remarkable feature of the 
proposed method is that it does not suffer from convergence 
problems, providing an accurate position estimate. Thus, the 
proposed method can be a good alternative solution for AOA-
based positioning for wireless communication systems.  
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