In low-density parity-check (LDPC) coded multiple-input multiple-output (MIMO) communication systems, probabilistic information are exchanged between an LDPC decoder and a MIMO detector. TheMIMO detector has to calculate probabilistic values for each bit which can be very complex. In [1], the authors presented a class of linear block codes named low-density MIMO codes (LDMC) which can reduce the complexity of MIMO detector. However, this code only supports the outer-iterations between the MIMO detector and decoder, but does not support the inner-iterations inside the LDPC decoder. In this paper, a new approach to construct LDMC codes is introduced. The new LDMC codes can be encoded efficiently at the transmitter side and support both of the inner-iterations and outer-iterations at the receiver side. Furthermore they can achieve the design rates and perform very well over MIMO channels.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.43
no.3
s.345
/
pp.103-110
/
2006
Turbo code, a kind of error correction coding technique, has been used in the field of digital mobile communication system. As the number of iterations increases, it can achieves remarkable BER performance over AWGN channel environment. However, if the number of iterations Is increases in the several channel environments, any further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. To solve this problems, it is necessary to device an efficient criterion to stop the iteration process and prevent unnecessary delay and computation. In this paper, it proposes an efficient and simple criterion for stopping the iteration process in turbo decoding. By using variance values of noise derived from mean values of LLR in turbo decoder, the proposed algorithm can largely reduce the computation and average number of iterations without BER performance degradation. As a result of simulations, the computation of the proposed algorithm is reduced by about $66{\sim}80%$ compared to conventional algorithm. The average number of iterations is reduced by about $13.99%{\sim}15.74%$ compared to CE algorithm and about $17.88%{\sim}18.59%$ compared to SCR algorithm.
A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.22
no.1
/
pp.15-28
/
2018
Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.2
/
pp.277-284
/
2018
In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and engineering.
We focus on the interations of the weighted Berezin transform Tα on Lp(τ), where τ is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(τ) the space of radial integrable functions played important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. Here, we introduce more properties on iterations of Tα on L1R(τ) and observe differences between the iterations of Tα on L1(τ) and Lp(τ) for 1 < p < ∞.
We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.530-533
/
1996
This paper deals with finding an initial solution and modifying search direction by the centrering force in the predictor-corrector method which is a variant of the primal-dual barrier method. These methods were tested with NETLIB problems. Initial solutions which are located close to the center of the feasible set lower the number of iterations, as they enlarge the step length. Three heuristic methods to find such initial solution are suggested. The new methods reduce the average number of iterations by 52% to at most, compared with the old method assigning 1 to initial valurs. Solutions can move closer to the central path fast by enlarging the centering force in early steps. It enlarge the step length, so reduces the number of iterations. The more effective this method is the closer the initial solution is to the boundary of the feasible set.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.7
/
pp.1036-1044
/
1995
In this paper, a band-pass filter is implemented with the diffusion and difference processes by using the diffusion neural network model. The center frequency of this band-pass filter can be varied by iterations of the diffusion and difference operations, and the selectivity can be determined by iterations of the difference operation. We propose an efficient algorithm that can generate various band-pass filters using arbitrary diffusion and difference iterations. This algorithm needs only simple operations of diffusion and difference.
Constructing an initial basis is an important process in the simplex method. An initial basis greatly affects the number of iterations of iterations and the execution time in the simplex method. The purpose of this paper is to construct a good initial basis. First, to avoid linear dependency among the chosen columns, an enhanced Gaussian elimination method and a method using non-duplicated nonzero elements are developed. Second, for an order to choose variables, the sparsity of the column is used. Experimenal results show that the proposed method can reduce the number of iterations and the execution time compared with Bixby's method by 12%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.