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Abstract - In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the 

conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued 

roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which 

transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the 

geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function 

and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only 

the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and 

engineering.
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1. Introduction

The fixed-point theorem is one of the most powerful 

mathematical tools that have been widely applied in various 

fields, not only in pure mathematics, but also in the areas 

of engineering. For over a century, many researchers have 

demonstrated the existence and the properties of fixed point 

theory through analysis, topology, geometry, and numerical 

analysis. After Banach proved that a contraction mapping in 

the field of complete metric space possesses a unique point 

in 1922 [1], the contractive mapping was developed by 

many researchers as fixed point theory [2, 3]. In recent 

decades, the various numerical methods including the fixed 

point theory have been employed in fixed point theory to 

approximate the roots of polynomials and to demonstrate 

the convergence property [4, 5]. 

In this research, a new numerical method is proposed to 

find the real roots of the nonlinear systems by constructing 

a scheme that builds a converging sequence to a root of a 

function even in the case that the conventional fixed point 

theorem (CFPT) does not guarantee the convergence.

The CFPT is defined as follows. Let  be a 

real-valued function with an initial point  in the domain 

of . Then the fixed point iterations     , ∈ , 

the natural numbers, build a sequence  that may 

converge to a point  . If  is continuous, then the 

obtained  is a fixed point of  such as   . 

Analytically, for a complete metric space   with 

   →  , if  is continuous and satisfies 

  ≦    with  ∈ , ≦ then  has a 

unique fixed point  in  [7].

In this paper, an extended fixed point iterative method 

finds the real-valued roots of a polynomial by relaxing the 

constraint ≦ of CFPT, such that the regions of 

convergence to a root may be expanded. The metric defined 

by the proposed method converges to a fixed point, a root 

of , without the constraint ≦. The proposed 

iterative method provides the various good properties 

compared to CFPT besides relaxing the constraint. However, 

further research on the extended contractive iterative 

method (ECIM) is needed

On the extended contractive iterative method on the 

extended contractive iteration method (ECIM) for the 

applications in various fields, such as the linear and 

nonlinear system analysis in discrete and continuous control 
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Table 1 An example :     where    ,    

      ′  ROC The roots of   

 


  

 




     

    

′    

 


 

  



     

′    

′    

     
       

′    

′    

 ±   ±
 Improper form

theory.

The remainder of this paper is organized as follows. In 

Section 2, the problems involved in CFPT are discussed. 

Section 3 presents the ECIM and the extended fixed point 

theorem (EFPT) with proofs. In Section 4, some numerical 

simulations are presented to demonstrate the advantages of 

the proposed method. Finally, Section 5 draws the 

conclusions of the present study.

2. Problems Involved in CFPT

Let   X → X be a mapping from a set X to itself. We 

call a point ∈ a fixed point of  when   . We will 

discuss here the most basic fixed-point theorem in analysis 

to relax the constraints on it. Let   be a complete 

metric space and    → be a map, such that 

 ≦   for some ≦ and all  ∈. Then 

 has a unique fixed point  in  . Moreover, for any 

∈, the sequence      ⋯ converges to a 

fixed point ∈ [4, 6, 7]. A function  is called a 

contraction that shrinks the metric by a uniform factor 

for all pairs of points, where the contraction does not hold 

for some .

The first problem to be considered is that it is not easy 

to choose a proper form of  with convergence property 

for a given function    . Secondly, even the 

several different forms of  converge to the same fixed 

point, the convergence regions of different forms of 

may differ one from another due to the convergence 

constraint  ′   , which we call the convergence 

region problems.

For example, suppose that a polynomial 

     is given in a form of    . 

Several different forms of  maybe obtained as shown in 

Table 1, such as   
  ,   

  , 

  
  and   ±
 . The functions, , 

 and  have the different regions of convergence 

(ROC) which satisfy the constraint ′     ∈, 

while the function   is not in the proper form of 

convergence as presented in Table 1.

As shown in Table 1, a function  may be expressed 

in several different forms of ′ each of which has its 

own ROC, while   is in improper form for finding a 

root using the fixed point iterations. The example  in 

Table 1 has the two roots,  and  , but none of the 

forms presents the two contractive fixed points as the roots 

of simultaneously. 

The function  has only  as a fixed point and 

 constructs a contractive iterations converging to only 

 while the sequence generated by the iterations of 

converges to  and  alternatively not to the roots,  

since   and   are not in the region of 

ROC   as shown in Table 1. Based on the 

observations described, it is possible that those two roots of 

 can be obtained algebraically, which is not true in 

general for a higher order polynomial. However, the 

contractive iterations which converge to the roots may not 

be obtained by employing the fixed point theorem only. 

Those roots which are in ROC, where the area of ROC is 

derived by the constraint ′  , are obtained through 

the contractive property of fixed point theorem. Otherwise 

the contractive property cannot be kept if the roots are 

outside of ROC. Convergence to a fixed point requires that 

the root of a function must be inside of ROC which is 

derived from ′   where  is a point in the domain 

of the function .

From the above observations, we may conclude two facts. 

Firstly it is not easy to choose a proper form of  with 

the convergence property for a given function 

    from all possible forms ′ since we 

do not have any information on  in advance. Secondly, 

choosing the proper initial value in the domain of  for 
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Fig. 1 A scheme of finding the root of a function  using 

ECIM

the fixed point iteration is not easy because the choice of 

 constructs the region of convergence differently. 

However, it is not necessary for the initial values to be in 

the ROC when ECIM is used. It is true that if a root of a 

function  is in ROC, then the iterative sequence 

converges to a root of . In addition to this, in order to 

find the roots in ROC, the initial value also needs to be in 

ROC for the contraction property. When we choose an initial 

value outside of ROC, the iterations may and may not 

converge to the roots of a function . Even we choose 

an initial value in ROC, if a root of  locates in the 

outside of ROC, the generated contractive sequence does not 

converge to a root. Therefore we may conclude that the 

form of  determines the property of contractive 

convergence. 

In this work, we propose a new contractive iteration 

method to relax the constraint of convergence, ′  

by constructing a scheme that enhances the possibility of 

convergence to the roots of a function. The proposed 

method simplifies not only the conventional fixed point 

iteration but also the algorithm that generates a converging 

sequence instead of diverging sequence. Consequently, the 

proposed method simplifies the searching process for a 

unique form of  and expanding ROC by constructing 

the proposed scheme that transforms a diverging sequence 

to a converging sequence.

3. Extended Contractive Iteration Method (ECIM) 

Practically, the fixed point theorem in a continuous 

interval is constrained to satisfy ′   to find the 

roots of the function, such that a sequence of points 

for ∈ where  is the natural number, converges to a 

fixed point ∈. The fixed point is a root of a given 

polynomial    when the constraint ′   is 

satisfied, where  is obtained from the relationship 

   . Otherwise, the sequence 

   ⋯   diverges for ∈ the natural number 

[6]. In the proposed scheme, for a given arbitrary function 

, a unique  is generated by setting   , 

we present a new method of generating a sequence which 

converges to a root of a function whether the constraint of 

CFPT is satisfied or not. At the same time, the problem of 

finding a proper  has been relaxed simultaneously.

The choice of initial value is set to be free in the 

proposed method since the sequence built by an arbitrary 

initial value is set to converge to roots or may diverge, 

which implies that the choice of initial value does not need 

to be in ROC for finding the roots of polynomial in the 

proposed scheme. However, a root of  needs to be in 

ROC if the fixed point generated by CFPT is set to be a 

root of the given polynomial. 

The proposed method expands the CFPT by generating a 

sequence of metrics defined in the opposite direction of 

divergence as described in Fig. 1. The sequence of metrics 

obtained by the proposed scheme is set to converge to a 

real-valued root of a function. For a chosen initial point  , 

the corresponding function value   is determined, such 

that a metric is defined as shown in Eq. (1) [6]. Since a 

point   is on a line   , a metric can be 

generated between   and   in the form of 

-norm such as

                        (1)

A new point  in the domain of a function  is 

generated by Eq. (2)

                 (2)

The parameter  is defined   as presented in 
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Table 2 A method of finding the next following point in 

the domain of function 

      

+1 +1 +1   

+1 -1 -1   

-1 -1 +1   

-1 +1 -1   

Table 2 with two functions  and  in  Eq. (3),    

    ′   ′  
,           

     (3)

The variable  is 1.0 when ′   and -1 when 

′   , while the variable  becomes  when 

      and -1 when      . The 

parameter   presents the four cases as shown in 

Table 2. A sequence is generated by the selecting a value 

in the domain of  using    . As it is shown 

in Table 2, when ′  , we need to determine whether

 locates above or below the line    and set the 

direction of sampling process in the domain of , such 

that the sequence converges to a root of a polynomial. 

Roots of polynomial locate at the points of intersections 

between  and   .

Suppose that  and  are the present sampled value 

and its corresponding  to  . Then, both the sampled 

value obtained from the next sampling process    

and its corresponding   need to be in the same side 

with respect to    until the sequence converges to a 

root. Then we check whether   and   are in the 

same side with respect to    by the following 

expression, where * denotes multiplication

          (4)  

If they are in the same side with respect to   ,

 , otherwise,  . When  , we reduce the 

sampling step size by a shrinking parameter ∈, such 

that a new metric

                         (5)

is revised recursively until  . The next sampling point 

is determined by   . The sequence sampling 

process is repeated until

                          (6)

where the predetermined criteria  is set as an allowed 

error. When the constraint, ′  , is not fulfilled, the 

sequence from the domain of  does not converge to a 

root    in CFPT as we have found. However, the 

diverging sequence extracted from CFPT may be switched 

to a converging metric sequence via the proposed scheme. 

The sequence of points  for  ∈ is designed to be 

generated through the recursive iterations,   

   where ∈ and ∈ the natural 

number. The variable ∈ affects the speed of 

convergence to a fixed point. 

Theorem 1. [Extended Contractive Iteration Theorem]

Let   be a complete metric space and   X → X be 

a map, such that 

                  (7)

for some  and all , ∈ . Then  has a unique 

fixed point  in  for any ∈ , where the sequence of 

iterations generated by      for ∈, 

such that  converges to a fixed point ∈ of  for 

∈ the natural number, lim
→∞

 .

  [Proof] From the constraint,      

where  implies that the absolute value of derivative 

is greater than 1.0 at each point ∈, such that 

′ ≧. Let   ∈ and  , then we define 

the value      and    .  

  Since  ′  ,      becomes 

    , such that      for 

 ∈   where   . Using the obtained  , we set the 

value  , such that   ,     . Then 

          
    and 

the distance between  and  becomes  

      .

For the obtained values  ,  , we can determine  , 

          
     

   

such that    for ∈  . Then for an arbitrary 

, we obtain    
       and 

   for all ∈,      

        such that lim
→∞

. Thus for any 

∈ the iterations      for ∈ where 

 ⋯, , generates the sequence  where 

 converges to the fixed point ∈ of , lim
→∞
 .
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Now, for an arbitrary function   , if it has a 

real root, then the root locates at the point where 

crosses    whether the constraints in CFPT is satisfied 

or not, since for a root ∈, the root searching iteration 

converges to  from an initial value  by using both 

CFPT and ECIM. Hence, whenever  crosses   , a 

real valued root can be obtained by the contractive 

iterations. It turns out to be sufficient to get the conclusion 

of the contraction mapping theorem for the functions with 

the real-valued roots by the following Theorem 2.

Theorem 2. [Extended Fixed Point Theorem (EFPT)]

Let  be a complete metric space and   X → X be a 

map, such that 

                 (8)

for some ≠ and all , ∈. Then  has a unique 

fixed point  in  whenever  has a real valued root 

using the iteration method.

  [Proof] Firstly, for  with ∈   and any ∈ , 

the sequence obtained from iterations  ,  ,  , 

 , ⋯, converges to a unique fixed point of 

    for  ∈ if    by 

CFPT. Secondly, for , the sequence extracted with 

≦

                 (9)

converges to  , lim
→∞
 , ∈ the natural number by the 

Theorem 1. Therefore, the statements in Theorem 2 hold.

4. Numerical Simulations

For a given function , the proposed method ECIM is 

applied to find the roots of the function    

whose roots cannot be obtained using the fixed points of 

the conventional fixed point theorem. In order to use the 

proposed scheme, a unique polynomial  is obtained by 

the relation   . As it is shown in Table 1, for

   , the conventional fixed point iterations do not 

converge to the roots of  when the roots of  are 

not in ROC  obtained from the constraints 

′ . However, the proposed scheme builds a sequence 

of contractive iterations, where a fixed point becomes a root 

of the function .

Fig. 2 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Fig. 3 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Table 3 Experimental results for a function    

using the proposed scheme

Fig.

Initial 
point:


Num. 
of iter.: 

N

Converging 
point: 

Error: 


Fig. 2 -0.01 22 -0.61803397 -6.873922e-8

Fig. 3 -1.0 20 -0.61803400 7.713588e-8

Fig. 4 0.0 26 1.61803397 -7.699750e-8

Fig. 5 3.0 21 1.61803399 5.669268e-8

Fig. 6 4.0 23 1.61803399 -5.200781e-8

Fig. 7 -2.5 19 -0.61803396 -8.889898e-8



전기학회논문지 67권 2호 2018년 2월

282

Fig. 4 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Fig. 5 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Fig. 6 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Fig. 7 Function     with   , the 

number of iterations , a fixed point  , 

error=, the initial value  

Figure 2, 3, 4, 5 illustrate the behaviors of contractive 

iterations  which converge to the roots, the fixed 

points, with initial values , , ,  respectively. 

Table 3 presents the results of numerical simulations using 

the proposed scheme with variable   , which is chosen 

as a constant for convenience. The variable  needs to be 

studied further since it affects the speed of convergence to 

a fixed point. The numerical simulation results present the 

contractive property of the proposed method by Theorem 1. 

The chosen sequences obtained by Theorem 1 converge to 

the roots of the polynomial while the sequences may 

diverge in CFPT.

Figure 6 and 7 represent two cases where the sequences 

converge to the fixed points in the proposed iterations with 

alternating with respect to the fixed points. In both cases, 

the metric  is greater than the distance to an adjacent 

root from the initial value. Even though there are some 

swings around a root, the sequence eventually converges to 

the root which attracts the iterations to a fixed point.

The method of generating a convergence sequence is 

demonstrated in Figures 8, 9 using the proposed scheme 

for the cases that  ′   for all ∈ , the domain of 

. Figures 8, 9 describe graphically the function 

obtained from  using    where 

    as they are illustrated in Table 

4. The experimental results demonstrate the property of 
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Fig. 8 Convergence of  where ∈ to the fixed point 

 , with the initial value  , error=

, the number of iterations=, and   

Fig. 9 With the initial value  , the sequence 

where ∈ converges to the fixed point 

 , error=, the number of 

iterations=, and   

contractive iterations to the roots of the polynomial 

    with variable    chosen as 

a constant for convenience. The variable  affects the speed 

of convergence to the fixed point. 

Table 4 A case of    where 

    with ′  for all 

∈, the domain of 

Fig.
Initial 
point:


Number 
of iter.: 

N

Converging 
point: 

Error: 

Fig.8 1.5 23 -1.3461239 6.4729278e-8

Fig.9 -2.5 20 -1.3461239 6.8319431e-8

With the function,   , we check the derivation 

of  at  a chosen initial point. If the slope at the 

chosen point is less than 1.0, we use the conventional fixed 

point iteration method using CFPT. When the absolute slope 

is greater than 1.0 at the chosen point  such as

′ , we apply the specified sequence generation 

process using ECIM. 

  In Figures 8, 9, for      , a unique 

function  is generated. The function  crosses the 

horizontal axis at the points where the roots of the function

 locate while  crosses a line    at the 

locations of roots of . The sequences of metrics in 

Figures 8, 9 illustrate the convergence to the two roots for 

the initial value   and the initial value  

respectively. 

  As illustrated in Figures 2-9, the experimental results 

show that a sequence of metrics  converges to a fixed 

point  even the absolute value of the slope of  , 

′ , is greater than 1.0. As shown in Figures, a set of 

metrics  is generated by connecting the points of 

and the corresponding points of    at each chosen 

point of the domain of a function . In Figures 8, the 

converging metric sequence  to the fixed point 

   is illustrated for the initial value  

with the number of iterations yields 23, the error 

, and the parameter   . Figure 9 shows 

the case of the initial value   where a sequence 

, which is a set of the chosen domain values of a 

function , converges to the fixed point   

with error . The number of iterations with 

the given conditions yields  with the process 

     where the variable   affects 

the speed of convergence to a fixed point. In experiments, 

we have demonstrated the convergence for the case and 

using Theorems 1 and 2. Further reaches is expected to 

take advantage of the good properties of the proposed 

method in various fields.

5. Conclusions

In this paper, EFPT is proposed using the metric 

constructed by an extended fixed point iterative method 

ECIM, such that any real-valued roots of a nonlinear system 
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may be obtained. The proposed method relaxes the 

constraints on the numerical fixed point iteration method 

for finding the roots of a nonlinear systems with the two 

good properties. 

Firstly, EFPT lets an initial value for a system converge 

to a real-valued root via the relaxation on the constraint by 

minimizing the constraint from ′  to ′≠.

Secondly, a unique form of  from     is 

able to be determined without the efforts for finding a 

proper form of  with trial and error. In the 

conventional fixed point theorem, CFPT, it is necessary to 

check several forms of ′ for  since a chosen 

may diverge or converge depending on the form of 

with the various regions of convergence. However, the 

proposed method, EFPT, improves the convergence to the 

real roots of a nonlinear system by expanding ROC with the 

relaxation on the constraints of . 

The proposed method is useful to establish the local 

existence and uniqueness of solutions of the ordinary 

differential equations. As some practical applications, the 

contraction mappings are useful to develop the simple 

numerical methods for solving nonlinear equations, such as 

the fuzzy logic programming. For example, the proposed 

fixed point theory may be applied for finding equilibrium 

points in the area of nuclear reactor analysis. In general, 

the applications of the fixed point theory can be focused on 

any kind of differential equations related to stability of 

dynamic systems of continuous-time, discrete-time, hybrid 

of both of them. Further researches are expected to be 

carried out for taking advantage of the good properties of 

EFPT for various applications in science and engineering 

fields.
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