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ABSTRACT. Recently Machine Learning algorithms are widely used mcess Big Data in
various applications and a lot of these applications arew®e in run time. Therefore the
speed of Machine Learning algorithms is a critical issuehese applications. However the
most of modern iteration Machine Learning algorithms usei@assive iteration technique
well-known in Numerical Linear Algebra. But this technigbhas a very low convergence,
needs a lot of iterations to get solution of considering f@wis and therefore a lot of time for
processing even on modern multi-core computers and ctustehebychev iteration technique
is well-known in Numerical Linear Algebra as an attractiemdidate to decrease the number
of iterations in Machine Learning iteration algorithms aaldo to decrease the running time
of these algorithms those is very important especially imtime applications. In this paper
we consider the usage of Tchebychev iterations for acaaaraf well-known K-Means and
SVM (Support Vector Machine) clustering algorithms in MaehLeaning. Some examples of
usage of our approach on modern multi-core computers ungdachfe Spark framework will
be considered and discussed.

1. INTRODUCTION

Now a day Machine Learning algorithms are widely uses in Dditsing for solution of
various application problems related with Big Data prom&ss In this paper we restrict our
consideration by two very popular Machine Learning (ML)althms, namely K-Means and
SVM (Support Vector Machine). These algorithms are amonghef10 the most popular
algorithms [1] in ML and they are widely used in various apations.

K-Means and SVM algorithms are widely used in Machine Visibrag Design, Genomic
and Bio-informatics, in Medical Cybernetics, in Financed @ome other applications. For
example, K-Means is used

o for direct clustering of Big Data;

e in Computer Graphics for color quantization (reducing cqlalette of images to a
fixed number of colors;

o for preliminary acceleration of Community Detection ckratg methods;

e as a preliminary procedure for parallelization of SVM ciustg method.
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In Computer Vision K-Means clustering technology is oneh# basic technologies, be-
cause it is used in 6 of 8 branches of Computer Vision, namelySignal Processing and
Compression, Data Mining, Machine Learning and Artificigelligence, Computer Graphics,
Automatic Control and Robotics, Applied Mathematics. @tfweo branches of Computer Vi-
sion, namely Physics Imaging and Neurobiology also usetdétisnology but not so often as
previous six.

One of attractive properties of K-Means clustering aldponitis its simplicity. But the pay-
ment for simplicity is weak properties of this algorithmosie are

e a lot of iterations especially in case of very big data andexpondingly a very big
CPU time for this data processing;
e convergence to a local minimum.

The first of above mentioned weak point is a principle obstatlK-Means clustering, be-
cause a lot of applications especially in Computer Visianranning in run time. This means
that the time of reaction in these applications should bg sarall. Therefore decreasing of
this time is one of the critical issue in these applicationd & is very important and urgent
problem in the usage of K-Means clustering.

2. BACKGROUND OFK-M EANS CLUSTERING

K-Means clustering algorithm was proposed by Steinhau®%6and developed by Lloyd
in 1957. It takes abouk’ N operations for clustering, whet€ is a number of clusters ansl
is a number of points in data. In Lloyd version K-Means corsgsiof the following steps:

e |t starts by setting initial centers of clusters (so calledding);

e Then assigns each data point to the closest cluster be @ugldlae distance between
each data point to each cluster centers and allocate eathtpdoihe nearest cluster;

e Re-evaluates each cluster center for each cluster group;

e Evaluates maximal absolute value of difference betweetecgon current and previ-
ous iterations;

e Repeats last three steps 2,3,and 4 until each cluster h#s stnter and members in
appropriate cluster;

e Evaluates a sum of square error to estimate quality of aingte

Evaluation of centers for each cluster in Lloyd’s versioratgforithm is provided as follows.
Let any cluster with index oni-th iteration consists oK; points with coordinate vectors

p; = {pjh Dj2, (X} p]n}> ] = 172737"'7Ki'
Then the center of cluster o iteration is evaluated as follows
1 &
7 j=1

Iterations are doing until
max [|z; — 21| <e (2.2)
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Heree is an exactness (usually abalit—% and||.|| is Euclidean norm in spack,,. The
scheme of classic Lloyd’s version of K-Means algorithm isvgh on Fig. 1.

Zetting intial centers of
each group

Azsign each dats to the
closest group

Reevaluate each center
far each group

Evaluste /& the maximal
absolute value of
difference between
centers on current
and previous terations

Evaluate gualty of
clustering.
End

Mewxdt teration

FIGURE 1. The scheme of Lloyd’s version of K-Means clustering.

3. PROFILE-GUIDED TCHEBYCHEV ALGORITHM

To date it were a lot of attempts to speed-up K-Means clugjegechnology. Mainly these
attempts were connected with changing of data structurgeusf another type of norm in
distance evaluation instead of classical Euclidean norereklve should mention Dan Pelleg
and Andrew Moore paper [2] in which kd-trees were used to lacate nearest-neighbour
search queries. This technique modifies steps 4 and 5 in slaygorithm by decreasing the

number of operations on steps 4 and 5.
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Another attempts were done in papers [3-7] and they areecklatith effect of seeding. In
[3] a preclustering technique instead of random seedingusad to decrease the number of
iterations and running time. Other algorithms of seedingevemnsidered in [4-7]. All these
modifications concern step 3 in Lloyd'’s algorithm.

Jenks in [8] suggested to use maodified function in minimaaproblem and also suggested
another seeding. He obtained about 90 percent speed-upyf'simethod, but only in some
cases.

In 2004 Ya Guan, Ali Ghobani, and Nabil Belacel proposed Kakte+ modification [9]. It
selects the number of clustering automatically basing draimata analysis.

Unfortunately in all above cited approaches there were mpiaétempts to change iteration
process and decrease by this manner the number of iteratioa these approaches the suc-
cessive iteration technique is used. Now we suggest to esedhebychev iteration technique
instead successive iteration technique. In this case awErsepresent the formula of clusters
computation in evaluation form as follows

1 K; 1 K; 1
Ti = Ti—1 = prj K ij (3.1)
7 j=1 1—1 =1
or as follows
i = xi—1 + 7 A(xi_1,T-2) (3.2)
Here
1 Kz' 1 Kzfl
A(mi_l,xi) = fzpj — K— ij, T=1 (33)
i 53 e

Now let us consider four layers Tchebychev iteration metfid for centers of clusters
evaluation. We denotg,.;, and ., minimal and maximal eigenvalues of operator
Also we denote so called “optimal” time step in the succesgiration method as follows

B 2
o= )\min + )\max
and value
00 = )\max - )\min
)\min + )\max

We suggest that the time stepn iteration process is changing with respect to the number o
iteration (i + m) and evaluate it on each sequential 4 iterations by the falligWormulas
Leti = 4¢ + m, then
J— TO
TMatm) = 77750 cos[(2m — 1)7/8]

Hererg4m) » (m = 1,2,3,4) are roots of Tchebychev polynomial of the 4th order. Thus we
evaluate the centers of clusters by the following iterafamulas

) (m = 1727374)

Ti = Tio1 + Tagem) A@io1,i2), i = (4¢ + m), (m = 1,2,3,4) (3.4)
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Unfortunately in the formulas above we can not expressedatqred in the explicit analyti-
cal form and therefore we can not evaluate or estimate itdmaand minimal eigenvalues
analytically or numerically. At the first glance this protrids seemed unresolvable in math-
ematical sense. To solve it we go out of mathematics and goainfitrmatics. To solve our
problem we formulate two important properties basing onciwhie try to solve our problem.

Property 1: Operator A should be compressible to provide the convergence of iiberiro-
cess.

Property 2: The number of iterations in the considering iteration pracsblould be at least
minimal as possible.

BasingProperty 1 andProperty 2 we suggest the following algorithm to evaluate the maximal
and minimal eigenvalues of operatdr

Profile-Guided Tchebychev Algorithm:

e STEP 1 Let us choose any small data subgetf the small volume from the consid-
ering data seD = py, po, ps, ..., pr. Here K is a number of points in the considering
data setD.

e STEP 2 The volume of subset should be small to provide evaluations by Lloyd’s
algorithm in a short time. In practice it is possible to usardom choice selection of
subsetd from D data set.

e STEP 3 Providing evaluations clusters centers with iteratiamfolas (3.4) on subset
d for any fixed A\.x and Apin, We consider the following unrestricted minimization
problem for maximal and minimal eigenvalues choosing devd:

Find Niter(kmaxa /\min) — min

The solution of above mentioned problem should be obtaineddll-known alter-
native descent method [11]. The example of appropriate Blattode is available in
[12].

The scheme of profile-guided Tchebychev version of K-Medusering algorithm is shown
on Fig. 2. On this scheme the new blocks in comparison witlyd’toversion of K-Means
algorithm are shown in oval frames. The overhead of the mepanodification is very small
in comparison with evaluation of centers of clusters comapon. It should be omit, because
the time steps can be tabulated in advance and it needs opig\umle evaluations by formula
(3.2). These additional evaluations contain only 1 add amulltiply operations.

4. PERFORMANCE OFPROFILE-GUIDED TCHEBYCHEV ALGORITHM

Now let us consider an example of usage 4 Layers Profile-@uladebychev Algorithm
(4LPGTch) for K-Means clustering on the real well-knownalfile kmeanstrain. 3089 con-
sisting of 3089 lines with 5 columns. An exactness of corecg in this example was taken



20 MIKHAIL P. LEVIN

Setting inttial centers of
each group

l

i Tabulate teration steps

Profiling by
aiternative-direction descent
methiodd

Profile information:

/xvnir? 3 f\m ax

Tis T2 T3, T4

Azsign each data tothe
clozest group

Reevaluate sach center
far each groug

Evalugte & the maximal
abzolute value of
difference between
centers on current
and previous terstions

Evaluate guality of
cluztering,
End

Mext teration

FIGURE 2. Profile-Guided Tchebychev 4 Layers K-Means Clustering.

equal tol0~7. For comparison with our approach Successive lteratiorhbte{Lloyd's algo-
rithm), 3 Layers B.T.Polyak’s Iteration Method (3LPIM) [1&nd Successive Over Relaxation
Method (SORM) with fitting of changing relaxation coefficierwere taken. The appropriate
results are presented in the following Table 1.

Thus the usage of 4 Layers Profile-Guided Tchebychev Algoriessentially decreases
the number of iterations (up tt3/4 = 3.25) times in comparison with successive iteration
algorithm uses in Lloyd’s version of K-Means clustering. comparison with other iteration
algorithms such as 3 Layers B.T.Polyak’s Iteration Method &uccessive Over Relaxation
Method with fitting of changing relaxation coefficients, adl1/4 = 2.75 and7/4 = 1.75
advantage.
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TaBLE 1. Comparison of various algorithms for K-Means clustering

Algorithm Number of iterationg  Speed up
Lloyd’s algorithm 13 0%(basement
3LPIM 11 +15%
SORM 7 +46%
4LPGTch 4 +69%

Now let us consider one additional example of big volume did¢awhose was gener-
ated by repeating of 2000 times of kmeatrain. 3089 data. We provided computations by
Kmeans|| algorithm from Apache Spark ML Library. This algorithm isitten on Scala pro-
gramming language. Also we modified this software with 4,rG] 8 Layers Profile-Guided
Tchebychev ideas. We denote this versiom&s PGT' ch_Kmeans||. Since Kmeans|| and
M LPGTch_-Kmeans| use random initial data in seeding of cluster centers, theirtimes
are changing also randomly. Therefore for estimation ailtesve need to use some statistic
estimations. We used the sets of 50 runs. Of course, thisti&tds not perfect, but it gives
us some raw statistic estimations of performance of corisigl@lgorithms. The appropriate
results are presented in Table 2 below. The number of chigtethese examples was taken
equal to 5 and the number of layel$ was taken qual to 4, 6 and 8. The following notations
are used avNl is an average number of iterations, avIT is arage time of iteration block run
in second, avTT is an average total time run in seconds, amedsipssu were evaluated as
follows
avNI(K Means||)

NI) =
su(avNT) avNI(MPGTcheb_K Means||) ’
avIT (K Means||)
IT) =
su(avIT) avIT(MPGTcheb_K Means||)’
TT(KM
su(avTT) = il e

avTT (M PGTcheb_K Means||)

TABLE 2. Comparison of{ Means| and M PGTch_K Means|| with M 4, 6, 8

Algorithm avNl | avIT | avTT | su(avNIl) | su(aviT)| su(avTT)
KMeang|_ML_Lib | 31 |173"| 197" 1.00 1.00 1.00
4PGTchK Means|| | 23 |130"| 155" 1.36 1.34 1.27
6PGTchK Means| | 22 | 119" | 141" 1.40 1.46 1.40
8PGTchK Means|| | 22 | 134" | 160" 1.40 1.29 1.23

This table shows that the best results are obtained Wh¥ T ch_K M eans|| algorithm.
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5. BACKGROUND OFSVM CLUSTERING

SVM (Support Vector Machine) algorithm was proposed by Vad Vapnik and Alexey
Chervonenkis [1,14-15] in 1963. It widely uses in Machineidh, Drag Design, Genomic and
Bioinformatics, in Medical Cybernetic, in Finance for addit clustering of big data.

In recent years SVM is very popular approach non-hieraathilustering and binary clas-
sification. It can use a lot of different kernels and différipe of measures to provide a best
fitting of clustering data.

SVM has three important advantages:

e Firstly, it has a regularization parameter, which makesuder thinking about avoiding
over-fitting;

e Secondary, it uses a kernel trick, so can build in expert kedge about the problem
via engineering the kernel,

e Thirdly, SVM is solved by usage a convex optimization profjenamely Quadratic
Programming Problem (QPP) which avoids local minimizasohlutions and for which
developed various efficient methods.

The weak points of SVM are

e alot of iterations for big data analysis and therefore a iJGime for clustering;

e SVM theory only really covers the determination of the pagters for a given value
of regularization and kernel parameters;

e SVM moves the problem of over-fitting from optimizing the pareters to the model
selection. Sadly the kernel models can be quite sensitivevéo-fitting the model
selection criterion.

To evaluate a separate hyper-plane parameters, SVM usesafiadrogramming Problem
(QPP). To date there are a few different methods for solubb@PP in SVM. One of the
most promising approach was proposed by John C. Platt [@6] Microsoft Research. In this
approach instead the full multidimensional QPP the sequen@ dimensional QPP is solved
step-by-step in successive iteration process.

Thus one of the challenge problem in SVM clustering is anlacagon of convergence and
decreasing ¢ CPU time, especially in run-time applicatitimsre the response time is a critical
value, and in big data analysis.

In a linear case SVM problem consists in evaluation of a sgpariane

u=uW - d —-b=0 (5.1)
subject to the following inequality
yi(W - 7)) —b>0, 1<i<n (5.2)

Herew is output of SVM,b is a thresholdz; is a training example to the inpd¥, i, e
{—1,+1} is a desired output andis a dimension of problem.

The problem of searching the separate plane (5.1) subjexdnditions (5.2) is reduced to
minimization of || % || subject to conditions (5.2). According to Kurosh-Kuhn-Keictheorem
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(KKT) the above mentioned problem of Quadratic Optimizat{®OP) is equivalent to the
dual problem of the saddle point to Lagrange function exalnas follows

12 &
=) = = _ s 7 — ;
L(@, b, d) = 2”?” ZZ:; O‘zyz((@ ?2) b) — (I%l})l) mﬁaX' (5.3)
Hered = {;}7_, are Lagrange multipliers.
QOP (5.3) can be rewritten with respect to Lagrange mudtiplas the following Quadratic
Programming Problem (QPP)

n 1 n n
—L(d) = — Z i+ 522042‘0@1/2‘%(5;'37;) — max, (5.4)
i=1 i=1 j=1 @
0<a,<C 1<i<n (5.5)
i=1

Training of SVM consists in evaluation @ from solution of QPP (5.4-5.6) and evaluation of
w5 andb as follows

B = Zaiyiff, (5.7)
i=1
b=7u -7 —y, o >0. (5.8)

SMO algorithm consists in iterative solution step-by-stéth respect to any pair of Lagrange
multipliers oy, . Each QP sub-problem with respectdg o, is solved analytically. It-
erations are terminated when all Karush-Kuhn-Tucker (Kigplimality conditions has been
valid

if o, =0, then yu; > 1, (5.9)
if 0< i < C, then yiu; = 1, (5.10)

The SVM-SMO scheme of principle is shown on Fig. 3.

6. PROFILE-GUIDED TCHEBYCHEV MODIFICATION OF SVM-SMO CLUSTERING

Now let us consider a modification of SVM-SMO algorithm usidgas of Profile-Guided
Tchebychev approach applied before to K-Means algorithinfirgt we present formulas for
parameters of separation plane computation in evaluation f

T® - BED = 3oy 7 ey (6.1)
i=1
bk — pe=h) — k) g g — bR g > 0. (6.2)

Formulas (6.1-6.2) can be presented in the following veftion
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FIGURE 3. SVM-SMO scheme of principle.

Z® = 260 4 s K@M,y 7, 206, (6:3)

whereK> =

Zaﬁk) yizp — whY
i=1

T® T gy, — kD

is a vector operator; = 1, k is a number of iteration, and — {W, b} is a searching vector.

Formula (6.3) represents a successful iteration techriaqevaluation of parameters of sep-
aration plane. Now we will consider application of Multiyers Tchebychev iteration tech-
nique for evaluation of parameters of separation plane IMSSMO algorithm.
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Let 7 is not constant and is changing in iteration process witpeesto the number of
iterations and is evaluated on eakhiterations as follows
70
T =
(ktm) = 173 60 cos[(2m — 1) /(2M)]

(m = 1,2,3,..., M),

where
2 _ /\max — /\min
>\min + >\max7 oo /\min + /\max’
Amin @Nd A, are minimal and maximal eigenvalues of opera&r
Now let us consider Multi-Layers Profile-Guided TchebycliBiLPGTch) algorithm for
SVM-SMO clustering. This algorithm is quite similar to 4LF€h algorithm considered before
for K-Means clustering, but it has additional parameterthmber of layersi/.

T0 =

Multi-Layers Profile-Guided Tchebychev Algorithm:

e 1.Let us choose any small data subseft the small volume from the considering data
setD = py,p2,p3, ..., i . HereK is a number of points in the considering dataBet

e 2.The volume of subset should be small to provide fast evaluations by SVM-SMO
algorithm in a short time. In practice it is possible to usardom choice selection of
subsetd from D data set.

e 3. Providing evaluations of separation plane by iteratmmiulas (6.3) on subsétfor
any fixed number of layer8/, eigenvalues\,,.x and \.in, We consider the follow-
ing unrestricted minimization problem for maximal and mial eigenvalues, and the
number of layers choosing as follows:

Find Nizer (M, Amax, >\min) — min

The solution of above mentioned problem also as for K-Medgrithm can be ob-
tained by well-known alternative descent method.

The scheme of multi-layers profile-guided Tchebychev wersif SVM-SMO clustering
algorithm is shown on Fig. 4. On this figure the new blocks imparison with SVM-SMO
algorithm are shown by rectangles with rounded corners.

In our numerical profiling we restricted consideration bged/ = {4,6,8}. Solving
minimization problem of test data set of small volume we ibigtd the following solution:
M = 6, Amax = 1.0010, Apnin = 0.7955. As our experience shows it is possible to use
this solution in MLPGTch clustering for other data sets uithg data sets of huge volume.
Perhaps this is related with weak dependence of opelz_ﬁtwith data sets. But this is only
our hypothesis confirmed by our numerical experiments. \Bele consider some numerical
results obtained with MLPGTch algorithm.
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FIGURE 4. MLPGTch SVM-SMO scheme of principle.

7. PERFORMANCE OFMULTI-LAYERS PROFILE-GUIDED TCHEBYCHEV SVM-SMO
ALGORITHM

Now let us consider some examples of usage Multi-Layers IB¥Giilided Tchebychev
SVM-SMO Algorithm for clustering on some examples. At first wonsider two simple 2D
examples for which it is possible to construct the sepamdii@ by using the symmetry proper-
ties of data. The appropriate data are accumulated in th@nviolg Table. 3. The exactness of
convergence in all examples was taken equabtat. For comparison with our approach orig-
inal SVM-SMO algorithm was taken. The appropriate resulesgesented in the following
Table 4.
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Table 3. Data for Example 1 and Example 2

Data Example 1 Example 2
-3.0 2.0 20 2.0
—2.0 2.0 20 1.0
« matrix —-2.0 3.0 1.0 2.0
20 -=3.0 —-2.0 -1.0
3.0 =20 —2.0 =20
20 =20 —-1.0 -2.0
1 1
1 1
y vector ! 1
-1 -1
-1 -1
-1 -1

27

Here Niter(Algorithm) is a number of iterations with usadethe appropriate algorithm and
Speedup=Niter(SVM-SMO)/Niter(MLPGTch)

Table 4. Comparison of algorithms for SVM-SMO clustering

Algorithm Number of iterationg Speedup
Example 1. Original SVM-SMQ 162 1.00
Example 1: MLPGTch M=6 99 1.64
Example 2: Original SVM-SMQ 709 1.00
Example 2: MLPGTch M=6 54 13.13

Thus we can see that usage of Multi-Layers Profile-Guidedebgthev Algorithm essen-
tially decreases the number of iterations (upl813) times in comparison with successive
iteration algorithm used in original SVM-SMO.

8. CONCLUSIONS

The presented results show that Multi-Layers Profiled-&diidichebychev technique can be
effective in acceleration of iteration algorithms in MawhiLeaning.
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