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ABSTRACT. Recently Machine Learning algorithms are widely used to process Big Data in
various applications and a lot of these applications are executed in run time. Therefore the
speed of Machine Learning algorithms is a critical issue in these applications. However the
most of modern iteration Machine Learning algorithms use a successive iteration technique
well-known in Numerical Linear Algebra. But this techniquehas a very low convergence,
needs a lot of iterations to get solution of considering problems and therefore a lot of time for
processing even on modern multi-core computers and clusters. Tchebychev iteration technique
is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number
of iterations in Machine Learning iteration algorithms andalso to decrease the running time
of these algorithms those is very important especially in run time applications. In this paper
we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and
SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of
usage of our approach on modern multi-core computers under Apache Spark framework will
be considered and discussed.

1. INTRODUCTION

Now a day Machine Learning algorithms are widely uses in DataMining for solution of
various application problems related with Big Data processing. In this paper we restrict our
consideration by two very popular Machine Learning (ML) algorithms, namely K-Means and
SVM (Support Vector Machine). These algorithms are among ofthe 10 the most popular
algorithms [1] in ML and they are widely used in various applications.

K-Means and SVM algorithms are widely used in Machine Vision, Drag Design, Genomic
and Bio-informatics, in Medical Cybernetics, in Finance and some other applications. For
example, K-Means is used

• for direct clustering of Big Data;
• in Computer Graphics for color quantization (reducing color palette of images to a

fixed number of colors;
• for preliminary acceleration of Community Detection clustering methods;
• as a preliminary procedure for parallelization of SVM clustering method.
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In Computer Vision K-Means clustering technology is one of the basic technologies, be-
cause it is used in 6 of 8 branches of Computer Vision, namely in: Signal Processing and
Compression, Data Mining, Machine Learning and Artificial Intelligence, Computer Graphics,
Automatic Control and Robotics, Applied Mathematics. Other two branches of Computer Vi-
sion, namely Physics Imaging and Neurobiology also use thistechnology but not so often as
previous six.

One of attractive properties of K-Means clustering algorithm is its simplicity. But the pay-
ment for simplicity is weak properties of this algorithm, those are

• a lot of iterations especially in case of very big data and correspondingly a very big
CPU time for this data processing;

• convergence to a local minimum.

The first of above mentioned weak point is a principle obstacle in K-Means clustering, be-
cause a lot of applications especially in Computer Vision are running in run time. This means
that the time of reaction in these applications should be very small. Therefore decreasing of
this time is one of the critical issue in these applications and it is very important and urgent
problem in the usage of K-Means clustering.

2. BACKGROUND OFK-M EANS CLUSTERING

K-Means clustering algorithm was proposed by Steinhaus in 1956 and developed by Lloyd
in 1957. It takes aboutKN operations for clustering, whereK is a number of clusters andN
is a number of points in data. In Lloyd version K-Means comprises of the following steps:

• It starts by setting initial centers of clusters (so called seeding);
• Then assigns each data point to the closest cluster be evaluating the distance between

each data point to each cluster centers and allocate each point to the nearest cluster;
• Re-evaluates each cluster center for each cluster group;
• Evaluates maximal absolute value of difference between centers on current and previ-

ous iterations;
• Repeats last three steps 2,3,and 4 until each cluster has stable center and members in

appropriate cluster;
• Evaluates a sum of square error to estimate quality of clustering.

Evaluation of centers for each cluster in Lloyd’s version ofalgorithm is provided as follows.
Let any cluster with indexk on i-th iteration consists ofKi points with coordinate vectors

pj = {pj1, pj2, ..., pjn}, j = 1, 2, 3, ...,Ki .

Then the center ofk cluster oni iteration is evaluated as follows

xi =
1

Ki

Ki
∑

j=1

pj (2.1)

Iterations are doing until
max
k

||xi − xi−1|| < ε (2.2)
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Hereε is an exactness (usually about10−6 and ||.|| is Euclidean norm in spaceRn. The
scheme of classic Lloyd’s version of K-Means algorithm is shown on Fig. 1.

FIGURE 1. The scheme of Lloyd’s version of K-Means clustering.

3. PROFILE-GUIDED TCHEBYCHEV ALGORITHM

To date it were a lot of attempts to speed-up K-Means clustering technology. Mainly these
attempts were connected with changing of data structure, usage of another type of norm in
distance evaluation instead of classical Euclidean norm. Here we should mention Dan Pelleg
and Andrew Moore paper [2] in which kd-trees were used to accelerate nearest-neighbour
search queries. This technique modifies steps 4 and 5 in Lloyd’s algorithm by decreasing the
number of operations on steps 4 and 5.



18 MIKHAIL P. LEVIN

Another attempts were done in papers [3-7] and they are related with effect of seeding. In
[3] a preclustering technique instead of random seeding wasused to decrease the number of
iterations and running time. Other algorithms of seeding were considered in [4-7]. All these
modifications concern step 3 in Lloyd’s algorithm.

Jenks in [8] suggested to use modified function in minimization problem and also suggested
another seeding. He obtained about 90 percent speed-up of Lloyd’s method, but only in some
cases.

In 2004 Ya Guan, Ali Ghobani, and Nabil Belacel proposed K-Means+ modification [9]. It
selects the number of clustering automatically basing on initial data analysis.

Unfortunately in all above cited approaches there were not any attempts to change iteration
process and decrease by this manner the number of iterations. In all these approaches the suc-
cessive iteration technique is used. Now we suggest to use the Tchebychev iteration technique
instead successive iteration technique. In this case at first we represent the formula of clusters
computation in evaluation form as follows

xi − xi−1 =
1

Ki

Ki
∑

j=1

pj −
1

Ki−1

Ki−1
∑

j=1

pj (3.1)

or as follows
xi = xi−1 + τ A(xi−1, xi−2) (3.2)

Here

A(xi−1, xi) =
1

Ki

Ki
∑

j=1

pj −
1

Ki−1

Ki−1
∑

j=1

pj, τ = 1 (3.3)

Now let us consider four layers Tchebychev iteration method[10] for centers of clusters
evaluation. We denoteλmin andλmax minimal and maximal eigenvalues of operatorA.

Also we denote so called “optimal” time step in the successive iteration method as follows

τ0 =
2

λmin + λmax

and value

̺0 =
λmax − λmin

λmin + λmax

We suggest that the time stepτ in iteration process is changing with respect to the number of
iteration(i+m) and evaluate it on each sequential 4 iterations by the following formulas

Let i = 4q +m, then

τ(4q+m) =
τ0

1 + ̺0 cos[(2m − 1)π/8]
, (m = 1, 2, 3, 4)

Hereτ(4q+m) , (m = 1, 2, 3, 4) are roots of Tchebychev polynomial of the 4th order. Thus we
evaluate the centers of clusters by the following iterationformulas

xi = xi−1 + τ(4q+m) A(xi−1, xi−2) , i = (4q + m) , (m = 1, 2, 3, 4) (3.4)
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Unfortunately in the formulas above we can not expressed operatorA in the explicit analyti-
cal form and therefore we can not evaluate or estimate its maximal and minimal eigenvalues
analytically or numerically. At the first glance this problem is seemed unresolvable in math-
ematical sense. To solve it we go out of mathematics and go into informatics. To solve our
problem we formulate two important properties basing on which we try to solve our problem.

Property 1: OperatorA should be compressible to provide the convergence of iteration pro-
cess.

Property 2: The number of iterations in the considering iteration process should be at least
minimal as possible.

BasingProperty 1 andProperty 2 we suggest the following algorithm to evaluate the maximal
and minimal eigenvalues of operatorA.

Profile-Guided Tchebychev Algorithm:

• STEP 1. Let us choose any small data subsetd of the small volume from the consid-
ering data setD = p1, p2, p3, ..., pK . HereK is a number of points in the considering
data setD.

• STEP 2. The volume of subsetd should be small to provide evaluations by Lloyd’s
algorithm in a short time. In practice it is possible to use a random choice selection of
subsetd from D data set.

• STEP 3. Providing evaluations clusters centers with iteration formulas (3.4) on subset
d for any fixedλmax andλmin, we consider the following unrestricted minimization
problem for maximal and minimal eigenvalues choosing as follows:

Find Niter(λmax, λmin) → min

The solution of above mentioned problem should be obtained by well-known alter-
native descent method [11]. The example of appropriate MatLab code is available in
[12].

The scheme of profile-guided Tchebychev version of K-Means clustering algorithm is shown
on Fig. 2. On this scheme the new blocks in comparison with Lloyd’s version of K-Means
algorithm are shown in oval frames. The overhead of the proposed modification is very small
in comparison with evaluation of centers of clusters computation. It should be omit, because
the time steps can be tabulated in advance and it needs only toprovide evaluations by formula
(3.2). These additional evaluations contain only 1 add and 1multiply operations.

4. PERFORMANCE OFPROFILE-GUIDED TCHEBYCHEV ALGORITHM

Now let us consider an example of usage 4 Layers Profile-Guided Tchebychev Algorithm
(4LPGTch) for K-Means clustering on the real well-known data file kmeanstrain 3089 con-
sisting of 3089 lines with 5 columns. An exactness of convergence in this example was taken
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FIGURE 2. Profile-Guided Tchebychev 4 Layers K-Means Clustering.

equal to10−7. For comparison with our approach Successive Iteration Method (Lloyd’s algo-
rithm), 3 Layers B.T.Polyak’s Iteration Method (3LPIM) [13], and Successive Over Relaxation
Method (SORM) with fitting of changing relaxation coefficients were taken. The appropriate
results are presented in the following Table 1.

Thus the usage of 4 Layers Profile-Guided Tchebychev Algorithm essentially decreases
the number of iterations (up to13/4 = 3.25) times in comparison with successive iteration
algorithm uses in Lloyd’s version of K-Means clustering. Incomparison with other iteration
algorithms such as 3 Layers B.T.Polyak’s Iteration Method and Successive Over Relaxation
Method with fitting of changing relaxation coefficients, it has11/4 = 2.75 and7/4 = 1.75
advantage.



ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEVITERATIONS 21

TABLE 1. Comparison of various algorithms for K-Means clustering

Algorithm Number of iterations Speed up
Lloyd’s algorithm 13 0%(basement)

3LPIM 11 +15%
SORM 7 +46%

4LPGTch 4 +69%

Now let us consider one additional example of big volume datafile whose was gener-
ated by repeating of 2000 times of kmeanstrain 3089 data. We provided computations by
Kmeans‖ algorithm from Apache Spark ML Library. This algorithm is written on Scala pro-
gramming language. Also we modified this software with 4, 6, and 8 Layers Profile-Guided
Tchebychev ideas. We denote this version asMLPGTch Kmeans‖. SinceKmeans‖ and
MLPGTch Kmeans‖ use random initial data in seeding of cluster centers, theirrun times
are changing also randomly. Therefore for estimation of results we need to use some statistic
estimations. We used the sets of 50 runs. Of course, this statistic is not perfect, but it gives
us some raw statistic estimations of performance of considering algorithms. The appropriate
results are presented in Table 2 below. The number of clusters in these examples was taken
equal to 5 and the number of layersM was taken qual to 4, 6 and 8. The following notations
are used avNI is an average number of iterations, avIT is an average time of iteration block run
in second, avTT is an average total time run in seconds, and speedupssu were evaluated as
follows

su(avNI) =
avNI(KMeans‖)

avNI(MPGTcheb KMeans‖)
,

su(avIT ) =
avIT (KMeans‖)

avIT (MPGTcheb KMeans‖)
,

su(avTT ) =
avTT (KMeans‖)

avTT (MPGTcheb KMeans‖)
.

TABLE 2. Comparison ofKMeans‖ andMPGTch KMeans‖ with M 4, 6, 8

Algorithm avNI avIT avTT su(avNI) su(avIT) su(avTT)
KMeans‖ ML Lib 31 173” 197” 1.00 1.00 1.00
4PGTchKMeans‖ 23 130” 155” 1.36 1.34 1.27
6PGTchKMeans‖ 22 119” 141” 1.40 1.46 1.40
8PGTchKMeans‖ 22 134” 160” 1.40 1.29 1.23

This table shows that the best results are obtained with6PGTch KMeans‖ algorithm.
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5. BACKGROUND OFSVM CLUSTERING

SVM (Support Vector Machine) algorithm was proposed by Vladimir Vapnik and Alexey
Chervonenkis [1,14-15] in 1963. It widely uses in Machine Vision, Drag Design, Genomic and
Bioinformatics, in Medical Cybernetic, in Finance for a direct clustering of big data.

In recent years SVM is very popular approach non-hierarchical clustering and binary clas-
sification. It can use a lot of different kernels and different type of measures to provide a best
fitting of clustering data.

SVM has three important advantages:

• Firstly, it has a regularization parameter, which makes theuser thinking about avoiding
over-fitting;

• Secondary, it uses a kernel trick, so can build in expert knowledge about the problem
via engineering the kernel;

• Thirdly, SVM is solved by usage a convex optimization problem, namely Quadratic
Programming Problem (QPP) which avoids local minimizationsolutions and for which
developed various efficient methods.

The weak points of SVM are

• a lot of iterations for big data analysis and therefore a big CPU time for clustering;
• SVM theory only really covers the determination of the parameters for a given value

of regularization and kernel parameters;
• SVM moves the problem of over-fitting from optimizing the parameters to the model

selection. Sadly the kernel models can be quite sensitive toover-fitting the model
selection criterion.

To evaluate a separate hyper-plane parameters, SVM uses Quadratic Programming Problem
(QPP). To date there are a few different methods for solutionof QPP in SVM. One of the
most promising approach was proposed by John C. Platt [16] from Microsoft Research. In this
approach instead the full multidimensional QPP the sequence of 2 dimensional QPP is solved
step-by-step in successive iteration process.

Thus one of the challenge problem in SVM clustering is an acceleration of convergence and
decreasing c CPU time, especially in run-time applications, there the response time is a critical
value, and in big data analysis.

In a linear case SVM problem consists in evaluation of a separate plane

u ≡ −→w · −→u − b = 0 (5.1)

subject to the following inequality

yi(
−→w · −→xi) − b ≥ 0, 1 ≤ i ≤ n (5.2)

Hereu is output of SVM,b is a threshold,−→xi is a training example to the input−→x , −→yi ∈
{−1,+1} is a desired output andn is a dimension of problem.

The problem of searching the separate plane (5.1) subject toconditions (5.2) is reduced to
minimization of‖−→w ‖ subject to conditions (5.2). According to Kurosh-Kuhn-Tucker theorem
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(KKT) the above mentioned problem of Quadratic Optimization (QOP) is equivalent to the
dual problem of the saddle point to Lagrange function evaluation as follows

L(−→w , b, −→α ) ≡
1

2
‖−→w ‖

2

−

n
∑

i=1

−→α iyi((
−→w · −→x i) − b) → min

(−→w ,b)
max
−→α

. (5.3)

Here−→α = {αi}
n
i=1 are Lagrange multipliers.

QOP (5.3) can be rewritten with respect to Lagrange multipliers as the following Quadratic
Programming Problem (QPP)

− L(−→α ) ≡ −
n
∑

i=1

−→α i +
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(
−→xi ·

−→xj) → max
−→α

, (5.4)

0 ≤ −→αi ≤ C, 1 ≤ i ≤ n , (5.5)
n
∑

i=1

αiyi = 0 . (5.6)

Training of SVM consists in evaluation of−→α from solution of QPP (5.4-5.6) and evaluation of
−→w andb as follows

−→w =

n
∑

i=1

αi yi
−→xi , (5.7)

b = −→w · −→xi − yi , αi > 0 . (5.8)

SMO algorithm consists in iterative solution step-by-stepwith respect to any pair of Lagrange
multipliers αl, αm. Each QP sub-problem with respect toαl, αm is solved analytically. It-
erations are terminated when all Karush-Kuhn-Tucker (KKT)optimality conditions has been
valid

if αi = 0, then yiui ≥ 1 , (5.9)

if 0 ≤ αi < C, then yiui = 1 , (5.10)

if αi = C, then yiui ≤ 1 . (5.11)

The SVM-SMO scheme of principle is shown on Fig. 3.

6. PROFILE-GUIDED TCHEBYCHEV MODIFICATION OF SVM-SMO CLUSTERING

Now let us consider a modification of SVM-SMO algorithm usingideas of Profile-Guided
Tchebychev approach applied before to K-Means algorithm. At first we present formulas for
parameters of separation plane computation in evaluation form

−→w (k) − −→w (k−1) =
n
∑

i=1

α
(k)
i yi

−→xi − −→w (k−1) , (6.1)

b(k) − b(k−1) = −→w (k) · −→xi − yi − b(k−1) , αi > 0 . (6.2)

Formulas (6.1-6.2) can be presented in the following vectorform
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FIGURE 3. SVM-SMO scheme of principle.

−→
Z (k) =

−→
Z (k−1) + τ

−→
A(α

(k)
i , yi,

−→xi ,
−→z (k−1)) , (6.3)

where
−→
A =















n
∑

i=1

α
(k)
i yi

−→xi − −→w (k−1)

−→w (k) · −→xi − yi − b(k−1)















is a vector operator,τ = 1, k is a number of iteration, and
−→
Z = {−→w , b} is a searching vector.

Formula (6.3) represents a successful iteration techniquefor evaluation of parameters of sep-
aration plane. Now we will consider application of Multi-Layers Tchebychev iteration tech-
nique for evaluation of parameters of separation plane in SVM-SMO algorithm.
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Let τ is not constant and is changing in iteration process with respect to the number of
iterations and is evaluated on eachM iterations as follows

τ(k+m) =
τ0

1 + ̺0 cos[(2m − 1)π/(2M)]
, (m = 1, 2, 3, ...,M) ,

where

τ0 =
2

λmin + λmax
, ̺0 =

λmax − λmin

λmin + λmax
,

λmin andλmax are minimal and maximal eigenvalues of operator
−→
A.

Now let us consider Multi-Layers Profile-Guided Tchebychev(MLPGTch) algorithm for
SVM-SMO clustering. This algorithm is quite similar to 4LPGTch algorithm considered before
for K-Means clustering, but it has additional parameter thenumber of layersM .

Multi-Layers Profile-Guided Tchebychev Algorithm:
• 1.Let us choose any small data subsetd of the small volume from the considering data

setD = p1, p2, p3, ..., pK . HereK is a number of points in the considering data setD.
• 2.The volume of subsetd should be small to provide fast evaluations by SVM-SMO

algorithm in a short time. In practice it is possible to use a random choice selection of
subsetd from D data set.

• 3. Providing evaluations of separation plane by iteration formulas (6.3) on subsetd for
any fixed number of layersM , eigenvaluesλmax andλmin, we consider the follow-
ing unrestricted minimization problem for maximal and minimal eigenvalues, and the
number of layers choosing as follows:

FindNiter(M,λmax, λmin) → min

The solution of above mentioned problem also as for K-Means algorithm can be ob-
tained by well-known alternative descent method.

The scheme of multi-layers profile-guided Tchebychev version of SVM-SMO clustering
algorithm is shown on Fig. 4. On this figure the new blocks in comparison with SVM-SMO
algorithm are shown by rectangles with rounded corners.

In our numerical profiling we restricted consideration by caseM = {4, 6, 8}. Solving
minimization problem of test data set of small volume we obtained the following solution:
M = 6, λmax = 1.0010, λmin = 0.7955. As our experience shows it is possible to use
this solution in MLPGTch clustering for other data sets including data sets of huge volume.
Perhaps this is related with weak dependence of operator

−→
A with data sets. But this is only

our hypothesis confirmed by our numerical experiments. Below we consider some numerical
results obtained with MLPGTch algorithm.
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FIGURE 4. MLPGTch SVM-SMO scheme of principle.

7. PERFORMANCE OFMULTI -LAYERS PROFILE-GUIDED TCHEBYCHEV SVM-SMO
ALGORITHM

Now let us consider some examples of usage Multi-Layers Profile-Guided Tchebychev
SVM-SMO Algorithm for clustering on some examples. At first we consider two simple 2D
examples for which it is possible to construct the separation line by using the symmetry proper-
ties of data. The appropriate data are accumulated in the following Table. 3. The exactness of
convergence in all examples was taken equal to10−4. For comparison with our approach orig-
inal SVM-SMO algorithm was taken. The appropriate results are presented in the following
Table 4.
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Table 3. Data for Example 1 and Example 2

Data Example 1 Example 2

x matrix

















−3.0 2.0
−2.0 2.0
−2.0 3.0
2.0 −3.0
3.0 −2.0
2.0 −2.0

































2.0 2.0
2.0 1.0
1.0 2.0
−2.0 −1.0
−2.0 −2.0
−1.0 −2.0

















y vector































1
1
1
−1
−1
−1





























































1
1
1
−1
−1
−1































Here Niter(Algorithm) is a number of iterations with usage of the appropriate algorithm and
Speedup=Niter(SVM-SMO)/Niter(MLPGTch)

Table 4. Comparison of algorithms for SVM-SMO clustering

Algorithm Number of iterations Speedup
Example 1: Original SVM-SMO 162 1.00
Example 1: MLPGTch M=6 99 1.64
Example 2: Original SVM-SMO 709 1.00
Example 2: MLPGTch M=6 54 13.13

Thus we can see that usage of Multi-Layers Profile-Guided Tchebychev Algorithm essen-
tially decreases the number of iterations (up to13.13) times in comparison with successive
iteration algorithm used in original SVM-SMO.

8. CONCLUSIONS

The presented results show that Multi-Layers Profiled-Guided Tchebychev technique can be
effective in acceleration of iteration algorithms in Machine Leaning.
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