• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.032 seconds

Performance of the Recursive Systematic Convolutional Code with Turbo-Equalization Method for PMR Channel (수직자기기록 채널에서 터보등화기 구조를 이용한 순환 구조적 길쌈 부호의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.15-20
    • /
    • 2009
  • For perpendicular magnetic recording (PMR) channels, noise-predictive maximum likelihood (NPML) detection method has been used. But, it is hard to expect improving the performance when the bit density is increased. Hence, we exploit the coding methods which has good performance. In this paper, we show the performance of the recursive systematic convolutional (RSC) codes with turbo-equalization method with different channel bit densities. The noise model is 80% jitter noise and 20% AWGN.

A Study on State Estimation Algorithm in Power System Using Inverse Lemma (Inverse Lemma를 이용한 상태추정 알고리즘의 개선에 관한 연구)

  • Moon, Y.H.;Park, J.D.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.182-185
    • /
    • 1996
  • The purpose of slate estimation in power system is to estimate the best-fit Slate variables from the measurements contaminated by various kind of noise. But because the majority of state estimation modules in EMS lack the convergence characteristics, sometimes the desirable outputs can't be obtained. So, in this paper, the new algorithm using the load now output as initial values in the state estimation calculation is proposed to guarantee the convergence. And if the load now outputs were used as the initial values in the calculation, the change in each step would be small compared to the original method using the flat start point. And the Inverse Lemma is used in the algorithm to calculate the new stale in each iteration step for reducing the calculation time. The proposed algorithm was tested on the IEEE 14, 30, 118 bus systems. Eventually, we were able to verity that the differences between the results obtained by the original method and proposed method were relatively small, and the effectiveness of the proposed algorithm increased when applied to the bigger systems.

  • PDF

Explicit Design of Commercial Pipe on a Slope with Pumping Power (동력경사 상용관의 양해법 설계)

  • Yu, Dong-Hun;Gang, Chan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.495-501
    • /
    • 1997
  • Pumping power being given, traditional method requires an iteration process for the solution of discharge and pipe diameter. Yoo and Kang (1996) have developed explicit equations for the estimation of discharge and pipe diameter for the cases of uniformly rough pipe on a sloping bed with a pumping power. The use of poser law for the estimation of friction factor enabled to develop the explicit form of equations. Yoo (1995a) has suggested the mean friction factor method for the estimation of friction factor of commercial pipe or composite surface pipe. With the same approach, the present work has developed the explicit equations of discharge or pipe diameter for the general case of commercial pipe on a sloping bed with a pumping power by adopting the mean friction factor method.

  • PDF

Shape optimal design of elastic structures by the domain adaptive method (領域適應法을 利용한 彈性體 形狀의 最適設計)

  • 정균양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.234-242
    • /
    • 1987
  • The solution of shape design problems based on variational analysis has been approached by using the domain adaptive method. The objective of the structural shape design is to minimize the weight within a bound on local stress measure, or to minimize the maximum local stress measure within a bound on the weight. A derived optimality condition in both design problems requires that the unit mutual energy has constant value along the design boundary. However, the condition for constant stress on the design boundary was used in computation since the computed mutual energy oscillates severely on the boundary. A two step iteration scheme using domain adaptation was presented as a computational method to slove the example designs of elastic structures. It was also shown that remeshing by grid adaptation was effective to reduce oscillatory behavior on the design boundary.

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

A Practical Method to Compute the Closest Approach Distance of Two Ellipsoids (두 타원체 사이의 최단 근접 거리를 구하는 실용적인 방법)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.19 no.1
    • /
    • pp.5-14
    • /
    • 2019
  • This paper presents a practical method to compute the closest approach distance of two ellipsoids in their inter-center direction. This is the key technique for collision handling in the dynamic simulation of rigid and deformable bodies approximated with ellipsoids. We formulate a set of equations with the inter-center distance and the contact point and normal for the two ellipsoids contacting each other externally. The equations are solved using fixed-point iteration and Aitken's delta-squared process. In addition, we introduce a novel stopping criterion expressed in terms of the error in distance. We demonstrate the efficiency and practicality of our method in various experiments.

A hidden anti-jamming method based on deep reinforcement learning

  • Wang, Yifan;Liu, Xin;Wang, Mei;Yu, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3444-3457
    • /
    • 2021
  • In the field of anti-jamming based on dynamic spectrum, most methods try to improve the ability to avoid jamming and seldom consider whether the jammer would perceive the user's signal. Although these existing methods work in some anti-jamming scenarios, their long-term performance may be depressed when intelligent jammers can learn user's waveform or decision information from user's historical activities. Hence, we proposed a hidden anti-jamming method to address this problem by reducing the jammer's sense probability. In the proposed method, the action correlation between the user and the jammer is used to evaluate the hiding effect of the user's actions. And a deep reinforcement learning framework, including specific action correlation calculation and iteration learning algorithm, is designed to maximize the hiding and communication performance of the user synchronously. The simulation result shows that the algorithm proposed reduces the jammer's sense probability significantly and improves the user's anti-jamming performance slightly compared to the existing algorithms based on jamming avoidance.

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.