DOI QR코드

DOI QR Code

강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure

  • 김세훈 (한국철도기술연구원, 경희대학교 토목공학과) ;
  • 나옥빈 (한국철도기술연구원) ;
  • 김성일 (한국철도기술연구원)
  • 투고 : 2012.11.05
  • 심사 : 2012.12.13
  • 발행 : 2013.03.30

초록

하이브리드 실험은 수치해석 모형과 물리적 부분구조 모형사이의 상호작용을 통하여 구조물의 거동을 예측하는 실험법이다. 본 연구에서는 지진하중 재하 시 1경간 2층 강 뼈대 구조물에 대한 다자유도 하이브리드 실험을 수행하고 유효성을 확보하는데 그 목적이 있다. 이를 위해 전용 하이브리드 수치해석 프로그램인 FEAPH을 개발하였으며, 최적화된 시스템을 구축하였다. FEAPH은 고정 반복법(Fixed iteration)과 병렬화(Parallelization) 기법을 적용하여 순차적 해석에서 발생되는 비효율적 연산을 개선하였다. 또한, 종전에 데이터 통신과 부분구조물과 해석프로그램간의 인터페이스를 간략화하여 하이브리드 시스템 구성을 최적화 하였다. 그 결과, 입력 가진시간(30초) 대비 약 10%의 실험시간이 소요되었다. 시스템의 신뢰성을 검증하고 선형실험과 강 뼈대 구조물의 동적거동을 예측하기 위해 비선형 실험을 수행하였으며 수치해석과의 변위응답이력은 거의 일치 하였다. 그러나 최대변위에 대한 응답은 다소 차이를 보였으며, 이는 재료 비선형성에 대한 해석상의 오차와 영구변형에 의해 발생한 것으로 판단된다. 따라서 적절한 재료 비선형 모델과 알고리즘의 개선이 이루어지면, 실시간 하이브리드 시스템은 구조물의 동적거동을 예측하는데 유용하게 활용될 것이며, 추후 진동대 실험을 대체할 수 있는 효과적인 실험 방법이 될 것으로 판단된다.

The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

키워드

참고문헌

  1. Bayer, V., Dorka, U. E., Fullekrug, U., Gschwilm, J. (2005) On realtime pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results, Aerospace Science and Technology, Vol. 9, No. 3, pp. 223-232. https://doi.org/10.1016/j.ast.2005.01.009
  2. Cho, S., Choi, I., Jung, D., Kim, C. (2010) Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model, EESK, Vol. 14, No. 6, pp. 33-43.
  3. Cho, S. (2011) Improvement of Hybrid Test System and Its Application Small Experimental Model, Thesis, MyongJi University, Yongin (in Korean).
  4. Choi. C. (2009) Development and Verification of Hybrid Test System using Small Column Mode, Master's Thesis, Myongji University, Yongin (in Korean).
  5. Dermitzakis, S. N. and Mahin, S. A. (1985) Development of substructuring techniques for on-line computer controlled seismic performance testing, UCB/EERC-85/04, Earthquake Engineering Research Center, University of California, Berkeley, California.
  6. Dorka, U. E. and Heiland, D. (1991) Fast online earthquake utilizing a novel PC supported measurement and control concept, 4th Conference on Structural Dynamics, Southampton, UK.
  7. Dorka, U.E. (2002) Hybrid experimental-numerical simulation of vibrating structures, International Conference WAVE2002, Okayama, Japan.
  8. Fenves, G. L., McKenna, F., Scott, M. H., and Takahashi, Y. (2004) An object-oriented software environment for cllaborative network simulation, Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada.
  9. Hakuno, M., Shidawara, M., and Hara, T. (1969) Dynamic destructive test of a cantilever beam, controlled by ananalog-computer, Transactions of the Japan Society of Civil Engineers, Vol. 171, pp. 1-9 (in Japanese).
  10. Jung, R. Y. and Shing, P. B. (2006) Performance evaluation of a real-time pseudodynamic test system, Earthquake Engineering and Structural Dynamics, Vol. 35, No. 7, pp. 789-810. https://doi.org/10.1002/eqe.547
  11. Jung, R.Y. and Shing, P.B. (2007) Performance of a real-time pseudodynamic test system considering nonlinear structural response, Earthquake Engineering and Structural Dynamics, Vol. 36, No. 12, pp. 1785-1809. https://doi.org/10.1002/eqe.722
  12. Kim, S., Na, O., Kim, S. et al. (2012) Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure, KSR ,Vol. 5, No. 4, pp. 413-421.
  13. Lee, J. (2012) Evaluation of Applicability and Reliability for Hybrid Testing, Thesis, Inha University, Incheon (in Korean).
  14. McKenna, F.T. (1997) Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing, Ph.D. Thesis, University of California, Berkeley.
  15. Nakashima, M. (2001) Development, potential, and limitations of real-time online (pseudo-dynamic) testing, Royal Society of London Philosophical Transactions A, Vol. 359, No. 1786, pp. 1851-1867. https://doi.org/10.1098/rsta.2001.0876
  16. Na, O., Kim, S., Kim, S. (2012) Real-time Structural Dynamic Test Using Parallelized Control Algorithms and Optimized Hybrid System, KSHM, Vol. 12, No. 5, pp.63-73 (in Korean).
  17. Saouma, V., Kang, D. H., and Haussmann, G. (2011) A Computational Finite-Element-Program for Hybrid Simulation, Earthquake Engineering and Structural Dynamics, Vol. 41, No. 3, pp. 375-389.
  18. Schellenberg, Andreas and Mahin, Stephen (2006) Integration of Hybrid Simulation within the General-Purpose Computational Framework OpenSees, Proceedings 8th National Conference on Earthquake Engineering, EERI, San Francisco, CA.
  19. Shing, P. B. and Vannan, M. T. (1991) Implicit time integration for pseudodynamic tests: convergence and energy dissipation, Earthquake Engineering & Structural Dynamics, Vol. 20, No. 9, pp. 809-819. https://doi.org/10.1002/eqe.4290200902
  20. Saouma, V. and Sivaselvan, M. (2008) Hybrid simulation : theory, implementation and applications, Taylor & Francis, UK.
  21. Takanashi, K. (1975) Non-linear earthquake response analysis of structures by a computer actuator on-line system - Part1 details of system, Transactions of the Architectural Intitute of Japan, Vol. 229, pp. 77-83 (in Japanese). https://doi.org/10.3130/aijsaxx.229.0_77
  22. Thewalt, C. R. and Mahin, S. A. (1987) Hybrid solution techniques for generalized pseudodynamic testing, UBC/EERC-87/09, Earthquake Engineering Research Institute, University of California, Berkeley, California.
  23. Thewalt, C. R. and Roman, M. (1994) Performance parameters for pseudodynamic tests, Journal of Structural Engineering, Vol. 120, No. 9, pp. 2768-2781. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2768)
  24. Wei, Z. (2005) Fast Hybrid Test System for Substructure Evaluation, Ph.D. thesis, University of Colorado, Boulder.