DOI QR코드

DOI QR Code

A Practical Method to Compute the Closest Approach Distance of Two Ellipsoids

두 타원체 사이의 최단 근접 거리를 구하는 실용적인 방법

  • Choi, Min Gyu (Dept. of Computer Science, Kwangwoon University)
  • 최민규 (광운대학교 컴퓨터과학과)
  • Received : 2019.01.08
  • Accepted : 2019.02.11
  • Published : 2019.02.20

Abstract

This paper presents a practical method to compute the closest approach distance of two ellipsoids in their inter-center direction. This is the key technique for collision handling in the dynamic simulation of rigid and deformable bodies approximated with ellipsoids. We formulate a set of equations with the inter-center distance and the contact point and normal for the two ellipsoids contacting each other externally. The equations are solved using fixed-point iteration and Aitken's delta-squared process. In addition, we introduce a novel stopping criterion expressed in terms of the error in distance. We demonstrate the efficiency and practicality of our method in various experiments.

본 논문에서는 두 타원체 사이의 중심 간 방향으로의 최단 근접 거리를 구하는 실용적인 방법을 제안한다. 이는 타원체로 근사한 강체 및 변형체의 물리기반 동적 시뮬레이션에서 타원체 사이의 충돌을 처리 하는 핵심 기술이다. 본 논문에서는 외부에서 접하는 두 타원체의 중심 간 거리와 접촉점 및 접촉방향에 관한 조건식을 세우고 고정점 반복법 및 Aitken의 델타 자승 절차를 이용하여 최단 근접 거리를 구하는 방법을 개발한다. 또한 실제 오차에 따른 종료 조건을 도입함으로써 게임 등의 실시간 응용에서 최단 근접 거리를 더욱 빠르게 구할 수 있게 한다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

Keywords

KGOHCL_2019_v19n1_5_f0001.png 이미지

[Fig. 1] Two contacting ellipsoids e1(x) = 1 and e2(x-dn) = 1 with the closest approach distance d in the inter-center direction n and their concentric ellipsoids (with the same aspect ratios) contacting along the curve x(λ) where the gradient vectors ∇e1(x) and ∇e2(x-dn) are parallel.

KGOHCL_2019_v19n1_5_f0002.png 이미지

[Fig. 2] Distribution of the number of solver iterations required to satisfy |λi+1 - λi| < 10-8 for 10 million pairs of ellipsoids generated randomly with γ = 3 and Γ = 3.

KGOHCL_2019_v19n1_5_f0003.png 이미지

[Fig. 3] Average and maximum numbers of solver iterations for one million samples generated for each γ increasing from 1 to 10 by 0.1.

KGOHCL_2019_v19n1_5_f0004.png 이미지

[Fig. 4] Average and maximum numbers of solver iterations for one million samples generated for each Γ increasing from 1 to 100 by 1.

KGOHCL_2019_v19n1_5_f0005.png 이미지

[Fig. 5] Average and maximum numbers of solver iterations for one million samples when Ε of the stopping criterion |λi+1 - λi| < Ε decreases from 1 to 10-10 by 10-1.

KGOHCL_2019_v19n1_5_f0006.png 이미지

[Fig. 6] Average and maximum numbers of solver iterations for one million samples when $\epsilon$ of the stopping criterion ${\mid}{\mid}x_1^{(i)}-x_2^{(i)}{\mid}{\mid}$ < ${\epsilon}r_{min}$ decreases from 1 to 10-10 by 10-1.

KGOHCL_2019_v19n1_5_f0007.png 이미지

[Fig. 7] Real-time simulation of 180 deformable models with 4,404 ellipsoidal particles using the as-rigid-as-possible solid simulation technique presented in [3].

KGOHCL_2019_v19n1_5_f0008.png 이미지

[Fig. 8] Distribution of the number of solver iterations for 49,716,944 pairs of ellipsoids with |λi+1 - λi| < 10-8.

KGOHCL_2019_v19n1_5_f0009.png 이미지

[Fig. 9] Distribution of the number of solver iterations for 49,716,944 pairs of ellipsoids with ${\mid}{\mid}x_1^{(i)}-x_2^{(i)}{\mid}{\mid} < 10^{-2}r_{min}$.

References

  1. M. Muller and N. Chentanez, "Solid simulation with oriented particles", ACM Transactions on Graphics, Vol. 30, No. 4, Article 92, 2011.
  2. M. G. Choi, "Real-time simulation of ductile fracture with oriented particles", Computer Animation and Virtual Worlds, Vol. 25, pp. 455-463, 2014. https://doi.org/10.1002/cav.1601
  3. M. G. Choi and J. Lee, "As-rigid-as-possible solid simulation with oriented particles", Computers and Graphics, Vol. 70, pp. 1-7, 2018. https://doi.org/10.1016/j.cag.2017.07.027
  4. W. Wang, J. Wang, and M.-S. Kim, "An algebraic condition for the separation of two ellipsoids", Computer Aided Geometric Design, Vol. 18, No. 6, pp. 531-539, 2001. https://doi.org/10.1016/S0167-8396(01)00049-8
  5. Y.-K. Choi, J.-W. Chang, W. Wang, M.-S. Kim, and G. Elber, "Continuous collision detection for ellipsoids", IEEE Transactions on Visualization and Computer Graphics, Vol. 15, No. 2, pp. 311-324. 2009. https://doi.org/10.1109/TVCG.2008.80
  6. X. Jia, Y.-K. Choi, B. Mourrain, and W. Wang, "An algebraic approach to continuous collision detection for ellipsoids", Compuer Aided Geometric Design, Vol. 28, pp. 164-176, 2011. https://doi.org/10.1016/j.cagd.2011.01.004
  7. L. Gonzalez-Vega and E. Mainar, "Solving the separation problem for two ellipsoids involving only the evaluation of six polynomials", In Proc. Milestones in Computer Algebra 2008.
  8. J. W. Perram and M. S. Wertheim, "Statistical Mechanics of Hard Ellipsoids. I. Overlap Algorithm and the Contact Function", Journal of Computational Physics, Vol. 58, 409-416, 1985. https://doi.org/10.1016/0021-9991(85)90171-8
  9. J. W. Perram, J. Rasmussen, E. Præstgaard, and J. L. Lebowitz, "Ellipsoid contact potential: Theory and relation to overlap potentials", Physical Review E, Vol. 54, No. 6, pp. 6565-6572, 1996 https://doi.org/10.1103/PhysRevE.54.6565
  10. L. Paramonov and S. N. Yaliraki, "The directional contact distance of two ellipsoids: Coarse-grained potentials for anisotropic interactions", Journal of Chemical Physics, Vol. 123, No. 19, Article 194111, pp. 1-11, 2005.
  11. X. Zheng and P. Palffy-Muhoray, "Distance of closest approach of two arbitrary hard ellipses in two dimensions", Physical Review E, Vol. 75, Article 061709, pp. 1-6, 2007.
  12. X. Zheng, W. Iglesias and P. Palffy-Muhoray, "Distance of closest approach of two arbitrary hard ellipsoids", Physical Review E, Vol. 79, Article 057702, pp. 1-4, 2009.
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition, Cambridge University, 2007.
  14. M. Teschner, B. Heidelberger, M. Muller, D. Pomeranets and M. Gross, "Optimized spatial hashing for collision detection of deformable objects", In Proc. Vision, Modeling, Visualization 2003, pp. 47-54, 2003.