• Title/Summary/Keyword: Iteration

Search Result 1,885, Processing Time 0.029 seconds

Bypass, homotopy path and local iteration to compute the stability point

  • Fujii, Fumio;Okazawa, Shigenobu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.577-586
    • /
    • 1997
  • In nonlinear finite element stability analysis of structures, the foremost necessary procedure is the computation to precisely locate a singular equilibrium point, at which the instability occurs. The present study describes global and local procedures for the computation of stability points including bifurcation points and limit points. The starting point, at which the procedure will be initiated, may be close to or arbitrarily far away from the target point. It may also be an equilibrium point or non-equilibrium point. Apart from the usual equilibrium path, bypass and homotopy path are proposed as the global path to the stability point. A local iterative method is necessary, when it is inspected that the computed path point is sufficiently close to the stability point.

2nd-order PD-type Learning Control Algorithm

  • Kim, Yong-Tae;Zeungnam Bien
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.247-252
    • /
    • 2004
  • In this paper are proposed 2nd-order PD-type iterative learning control algorithms for linear continuous-time system and linear discrete-time system. In contrast to conventional methods, the proposed learning algorithms are constructed based on both time-domain performance and iteration-domain performance. The convergence of the proposed learning algorithms is proved. Also, it is shown that the proposed method has robustness in the presence of external disturbances and the convergence accuracy can be improved. A numerical example is provided to show the effectiveness of the proposed algorithms.

A Closed-Form Solution of Linear Spectral Transformation for Robust Speech Recognition

  • Kim, Dong-Hyun;Yook, Dong-Suk
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.454-456
    • /
    • 2009
  • The maximum likelihood linear spectral transformation (ML-LST) using a numerical iteration method has been previously proposed for robust speech recognition. The numerical iteration method is not appropriate for real-time applications due to its computational complexity. In order to reduce the computational cost, the objective function of the ML-LST is approximated and a closed-form solution is proposed in this paper. It is shown experimentally that the proposed closed-form solution for the ML-LST can provide rapid speaker and environment adaptation for robust speech recognition.

SCHWARZ METHOD FOR SINGULARLY PERTURBED SECOND ORDER CONVECTION-DIFFUSION EQUATIONS

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.181-203
    • /
    • 2018
  • In this paper, we have constructed an overlapping Schwarz method for singularly perturbed second order convection-diffusion equations. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the central finite difference scheme on a uniform mesh while on the non-layer region we use the mid-point difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. When appropriate subdomains are used, the numerical approximations generated from the method are shown to be first order convergent. Furthermore it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme is it reduces iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.

Development of Road Profile Realization Software (로드 프로파일 재현 소프트웨어 개발)

  • 류신호;정상화;김우영;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.265-268
    • /
    • 1997
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotwe vehicle. Component testing is part~cularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axial road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The validity of the software are verified by applying the belgian road, the city road, the highway, and the gravel road. The results of the above experiment show that the real road profiles are realized well after loth iteration.

  • PDF

Forced nonlinear vibration by means of two approximate analytical solutions

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.853-862
    • /
    • 2014
  • In this paper, two approximate analytical methods have been applied to forced nonlinear vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and Perturbation Method (PM) are proposed and their applications are presented. The main objective of this paper is to introduce an alternative method, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions to show their accuracy. The results show the proposed methods are very efficient and simple and also very accurate for solving nonlinear vibration equations.

A Study on the Shortest Path using the Mathematical Equivalence of the Auction Algorithm (Auction 알고리즘의 수학적 등가를 이용한 최단경로에 관한 연구)

  • 우경환;홍용인;최상국;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.337-340
    • /
    • 1999
  • At each iteration, the path is either extended by adding a new node, or contracted by deleting its terminal node. When the destination becomes the terminal node of the path, the algorithm terminate. In the process of finding the shortest path to given destination, the algorithm visits other node, there by obtaining a shortest path from the origin to them. We show here that when the auction algorithm is applied to this equivalent program with some special rules for choosing the initial object prices and the person submitting a bid at each iteration, one obtains the generic form of the $\varepsilon$-relaxation method. Thus, the two methods are mathematically equivalent

  • PDF

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

A Study on CFD Uncertainty Analysis and its Application to Ship Resistance Performance Using Open Source Libraries (CFD의 불확실성 해석에 대한 고찰 및 소스 공개 코드를 이용한 선박저항성능에의 적용)

  • Seo, Seonguk;Song, Seongjin;Park, Sunho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.329-335
    • /
    • 2016
  • In the present paper, Computational fluid dynamics (CFD) uncertainty analysis proposed by ITTC was investigated and applied to ship resistance performance using open source libraries, called OpenFOAM. Uncertainties for grid size, time step and iteration number were studied. Wave patterns and hull wave profile were compared for various uncertainty parameters. From results, grid size uncertainty was mainly contributed to simulation numerical uncertainty.

Overlapping Design-Build-Test Cycles in Vehicle Development Process : System Dynamics Approach (시스템 다이나믹스를 이용한 자동차 개발 단계에서 Design-Build-Test Cycle의 중복에 대한 연구)

  • Lee, Sang-Don;Lim, Ik-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • 자동차 개발 단계는, 본질적으로, 수차례의 개발 단계를 거치면서 설계 그룹들 간의 정보 전달과 교환이 여러 차례 반복적으로 발생하게 된다. 이러한 복잡한 상호 정보 교환 과정을 정확하게 이해하여 업무가 수행되지 못하면 불필요한 재작업을 야기시킬 수 있으며, 이는 비용 낭비 및 계획에 차질이 발생할 수 있다. 이 연구에서는 시스템 다이나믹 모델을 개발하여 빈번한 design-built-test 싸이클이 자동차 개발 단계에 미치는 영향 및 이점들을 고찰하였다.