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In this paper are proposed 2nd-order PD-type iterative learning control algorithms for linear continuous-time system
and linear discrete-time system. In contrast to conventional methods, the proposed learning algorithms are constructed
based on both time-domain performance and iteration-domain performance. The convergence of the proposed learning
algorithms is proved. Also, it is shown that the proposed method has robustness in the presence of external
disturbances and the convergence accuracy can be improved. A numerical example is provided to show the

effectiveness of the proposed algorithms.
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Ever since Arimoto suggested iterative learning
control{ILC) methodology, there have been a number of
efforts to improve and apply ILC method. In fact, ILC
can be easily applied to the repetitive tasks since it
requires less a priori knowledge about the controlled
system in the controller design phase and it has the
capability of modifying an unsatisfactory control input
signal based on the knowledge of previous operations of
the same task [1-12]. Also, ILC is known to guarantee
an eventual uniform tracking performance as the
algorithm repetitively applies.

External disturbances such as state disturbances,
measurement noise are inevitable in the real control
systems. These disturbances can make the system
diverge by its iterative property. Therefore the
robustness problem of ILC has been studied by many
researchers. Heinzinger et al. have studied the
robustness properties of a class of learning control
algorithm for the nonlinear system [11]. Saab proved the
convergence and the robustness of both P-type learning
control for the nonlinear time varying system and
D-type learning control for the linear discrete-time
system([13, 15]. Bien and Hur proposed the higher-order
ILC method that utilize more than one past error
generated at prior iterations [7]. The higher-order ILC
can improve the convergence performance and the
robustness to the disturbances by using the multiple
past-history data pairs at the expense of additional
storage. However, this method can be applied to the
dynamic system that has the direct linkage between the
input and the output and there may arise some difficulty
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in finding the suitable weighting matrices satisfying the
convergence conditions, especially when the number of
past-history data pairs is large [7, 14].

In this paper, we propose 2nd-order PD-type ILC
algorithms based on both time-domain performance and
iteration-domain performance for linear continuous -time
system and linear discrete-time system. The control law
based on the iteration-domain performance can improve
the robustness to the disturbances by using the
past-history data pair like high-order ILC algorithm [7].
The convergence of the proposed algorithms is proved.
A numerical example is given to show that the proposed
method has robustness in the presence of the external
disturbances and the convergence performance is
changed according to parameter change.

In the sequel, the following notational convention is
adopted @ k is the iteration number; x(8, x(:) are state
vectors, u(#), u(i) are control input vectors and
wW(#H, y(i) are output vectors for continuous and
discrete-time systems respectively; I, is 7 X 7 identity
matrix; | x| denotes the Euclidean norm of a vector x ;

I Al denotes the induced matrix norm of a matrix A ;
and the following norms are defined.

Definition 1 We define the A, norm for a time function
f: 10,71 - R"

FA N 2 =supsero.n e “IAD I
where A > 0.
Definition 2 We define the A, norm for a time function
g: [0,N = R

I8 2, = supicro.m ¢ gl

where A>0 if a>1 and A<(Q if a<1.
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Remark 1 From above definitions, it is obvious that
TALS 1 fle < e T fl . and 1Al 1fle<
e’"|| I ., . These inequalities imply that the defined A,
-l

Therefore, the convergence can be proved employing the
defined A, norm and A, norm.

A; norm and norm are equivalent [17].

2. 2nd-order PD-type ILC for linear
continuous—-time system

In this section, we present a 2nd-order ILC algorithm
for linear continuous-time systems. Consider the linear
time-invariant dynamical system described by

() = Ax(H+ Bu(t) o))
W = Cx(d)

where x € R*, u € R” and y € R’ denote the state
vector, input vector and output vector respectively.
A, B and C are constant matrices with appropriate
dimensions, It is assumed that CB is nonsingular.

Let x,; be the desired state trajectory which is

continuously differentiable on [0, 7] and assume that
x4(0) = 0. (2)

Then we consider an ILC algorithm based on both
time-domain performance and iteration—domain
performance. At first, we consider PD-type leamning law
in the time domain such as Oh et all6), Bien et al.[8]
and Hwang et al[9] as follows :

wp(8)=u(t)+ T 8y (£) + A8y {(1)] 3

where I’ and A are learning parameters, and

x(t) = Ax(t)+ But) 4)
yt) = Cx 1),

vty = Cx 1) ,5)
Sv(t) = yt)—yi(t) (6)

Also, we consider PD-type control law in the iteration
domain as follows :

uk+1(t)=uk(t)+(0(6yk(t)—@5yk,1(t)) (7)

where @ and ® are learning parameters. Above
iteration—domain control law uses the past- history data
pairs like higher-order ILC algorithm [7] We propose a
new PD-type control law of the form
Ui = u D+ [ 8y ,(D+ A8y (D)
+ O(S8y D — BBy 1 (D)]. ®

If it is assumed that

I1,~ICBI

A

o<1 )]

and
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y(0) = v,0 =0, k= 0,1,2,--, (10)

Arimoto’s control law can make the error between v (9
and vy A9 approach to zero as £ — co [1]. In this paper,
we assume the conditions (9) and (10).

Theorem 1 Suppose that we can choose I' such that (9)
and (10) holds, and that the learning law (8) is
repetitively applied to (1). Then, for a given desired

output yLH, 0 < t< T, the leaming law (8)
guarantees that for each ¢ € [0, 7],
grgyk(t)=yd(t). (11)
Proof
Let #"(# be a control input such that
t
yAD=Ce®xy+ CJ.O e 9By (Ddr. (12)

where x, = x,(0). The proof is completed if one can

show LL‘E‘O“/?( 9 = u*(#). For this, let us define

dud) S ut(D—uld. 13)

Then it follows from (8) and (12) that

w (D —uHIT 0y () + Ady (D
+ O(8y () — Oy -1 (1)
= w' (D~ ulDI Sy LD

+{(A+ )y (D — POy ,_1(D)]
= (I—-TCB)du ()

t
—ICA fo A9 By (Ddr

8y (8) =

t
— A+ ®)C fo 479 Bsy (Ddr
t
+ IroecC fo e 0Bsy 1 (Ddr

= (I-TCB)du {H —INCA+ AC

t
+00) fo e At B, (Ddr (14)

t
+106C | e ?Bsu,_ (D)dr
0

Taking the norm || - | on both side of (14), we have

| I-TCB1 - | 8uxd |
+ IIIJ(CA+/1C+G)C) f

< [ le* BIlIsu 2l dr
+ lreec|

< A2 Bl 6 - (Dl

t
+ k[ el ou) | dr

I aukﬂ(f) " <

t
+ hlfoe“("” I 8% oy (o) | dr (15)

where o 2 1I-ICBI .k I XCA+AC+0C) | -

1B, &y lreecl - 1Bl.a2 1Al.



By multiplying both side of (15) by e~ and taking
the norm | - | ;,

sup e M || Su iy (D |
te[0, 4]
< ol suHl
b a-n
+h, supfo e (-1

t[0, T1
supe ¥ | Su D) || dr
r=[0, 7]

H
Ny Isuﬁfo e(a*/l)(t*r)

tego, 7]
supe || Su () |l dr
r=[0, T]

l_e(a—/l)T
=(p+hoﬁﬁ) I Su (D1 5

lﬁe(a—'/l)T
= due (D4,

I duim(D 1, =

for A+a. (16)

Now, we can show that lim I Sun(t) § ,=0,if

1_e(a*/1)T lie(a~X)T
A—a I+, A

Lo+ hy <1, an

—a
Noting that the inequality (16) can be represented by a
non-negative sequence x, with the property

Xpty S ¥ Xpey T S Xy, k=1,2,3, -, (18)

where 7, s> 0 and the convergence condition is
equivalent to the condition that eigenvalues of
Xpio=7 X4 tsx, are all in the unit circle in the
complex plane, we can easily show that the above
sequence converges to zero if »+s < 1 holds.
Since 0<p<1 by assumption, it is possible to choose
A sufficiently large so that
[—gla T
A—a

Thus,

lim [ 0u(2) | 3,=0.

By definition of | - | ,, this implies

lim u () = u'(D.

This completes the proof.

Theorem 1 shows that the proposed learning algorithm
(8) guarantees convergence of the output in tracking as
k increases.

Remark 2 The proposed algorithm (8) looks more
complex than Ist-order methods [1, 2, 8 9, 6, 16l
However, it gives more freedoms for adjustment of both
convergence speed and tracking accuracy. With @=0,
the proposed method is much the same as the learning
law proposed by Oh et al[6], Bien et all8] and Lee

2nd-order PD-type Learning Control Algorithm

et all16). Also, when ®=0 and A=0, the proposed
method is essentially the same as the learning law
proposed by Arimoto ef al[1]. Thus, the proposed
method can be considered as a generalization of the
previous works [1, 6, 8, 16]. The convergence conditions
in theorem 1 are similar to the previous works [1, 6, 8, 16]
and more simple than the higher-order ILC method [7].

3. 2nd-order PD-type ILC for linear
discrete—-time system

Consider the linear discrete time dynamical system
described by

x(i+1)
¥3)

Ax(2) + Bu(i)

Cx(3) (20

yeR" denote the state vector,
input vector and output vector respectively. A, B and C
are constant matrices with appropriate dimensions. It is
assumed that CB is nonsingular.

Then the 2nd-order PD type ILC control law for the
system(20) can be described as follows :

up(d) = u{)+IT 8y, (i+1)+Ady D)
+ O(8y (D) — Oy - 1(D)]

where xeR",usR" and

2n

where I') A, @ and @ are learning parameters and
Svli) =y i) —y i) i=0,1,- N (22)
We assume that
| I,—ICBl <p<1, (23)
and
y0)=y,00=0, %£=0,1,2,-. (24)

Theorem 2 Suppose that we can choose I’ such that
(23) and (24) holds, and that the learning law (21) is
repetitively applied to (20). Then, for a given desired

output  yu(3),i=0,1,-,N, the learning law (21)
guarantees that for each /[0, N],
limy () =y (3). (25)
Proof
Let «*(i) be a control input such that
yAd=CA'ry+CZ AT Bu(), (26)

The

lim u H{D=wu"(i). For this, we define

where  xp = x 4(0). proof is completed if

dudd) 2 w(D—uii).

Then it follows from (21) and (26) that
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Sup () = w (D —u (DI i+ 1)+ Ay D
+ O(8y () — B3y ()]
= 2 (D—u D Sy, (i+1)
+(A+ @)y (1) — POy ()]
= (I—I'CB)ou (1)

—I'CA i:)A i\ Bou (j)
= -
— A+ 0)C S’;A I 1Bsw ()
. ]=

+I'P6C fOA I Bsu b1 (7) (28)
=
= (I—-TI'CB)ou (i) —I(CA+ AC
+ 00) gA I 1Bou W(5)
+I'eecC gA TITIBSw 1 () (29)

Taking the norm
I 8 pi(D) I <

I - | on both side of (29), we have
I I-TCBI - 1 8u (D |

+ | IXCA+AC+00) |
© S AT B

+ | roec |
- BT NIBow D

= dlow D+ ko Sya '™ Hou

thy Ba T o) I (30)

2 II(CA+AC+ 00| - 11Bll,

A

where o 2 |lI-ICBIl, k,

ry 2 llreec - 1B 1 .a 2 1Al

By muiltiplying both side of (30) by « ~# and taking
the norm |-l ,,

16% g4 1 (s, = suba ¥ 1 Su (D) |

i[0. M - G-
< ol Suyd) | T hosup a '
. i<[0. N
D TR L TN
jel0, Nl
+h sup a =(A=1)
liclo,M
2 a " VYsupa Y| b1,y (h) |
jel0, N
—(A

A

1—a ~1)N
(P+h0—?——1?1—_)" Su(t) | 4,
l_a—(/l—l)N
+(hl—ﬁ)”6uk—l(t) 2,
(31

Now, we can show that lim | du(2) I ,,=0, if

—(A-DN

__-(-DN _
pthy laﬁl—l_ I+[k laﬁlﬂ_l

] 1 KL (32

Since 0<p<1 by assumption, it is possible to choose A
sufficiently large so that
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1—q "GN
a* -1

1— g ~W-DN

A_
a* -1

pthy +h, <1. 33

Thus,

lim | 0 ,() 1 2,=0.

By definition of | - | ,, this implies

}?i_.rglouk(i) =u"(i).
This completes the proof.

Remark 3 With @=0, the proposed method is the same
as the learning law proposed by Hwang et al.[9] and
with @=0 and A=0, it is essentially the same as the
learning law proposed by Saab [15]. Therefore the
proposed method can be considered as a generalization of
the previous works [9, 15]. Also, the convergence
conditions in theorem 2 are similar to the previous works

[9, 15].
4. Simulation Example

In the following, we shall consider linear continuous
time-invariant dynamic system [16]

28; ol -12][i;?ii]*[?]u“”[?]w(ﬂ
W)= [0 1][ ;21((;))]+0.3u(z‘)‘ (34)

Also, suppose the desired output trajectory is given by

v (D=12¢(1— 9 0<¢t=<1

and let
y0)=y,=0 £=0,1,2,-.

Let us assume that CB=1.3 and I is chosen as 0.7
based on the condition (9). A is chosen as 0.7 based on
the condition (19). As shown in Figure 1, the output »(5
approaches the desired output v ,;(#) as the learning law
(8) is repetitively applied. The result in Figure 2 shows

T
2}1 fo le,(ldt according to the parameters, @ and 6.

T
Figure 3 shows fo lep(Hidt according to the parame-

ters, @ and @ at 10th iteration. We can show that the
tracking performance tends to depend on the choice of
learning parameters and can improve them by choosing
the suitable parameters, A, @ and ® The proposed
method is more free to adjust both convergence speed
and tracking accuracy. Figure 4 and Figure 5 shows that
the proposed method is robust to the state disturbance
and measurement noise that are random numbers whose
elements are normally distributed with mean 0 and
variance 1.
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S TN
25 SRR
/ n
2 M ......... ) \ ..................................... -
1st iterati \
» 15 A5l "\V §
] { AN
2
3 b 4” ) N\
1 p ¥ ,’1 \
fx1 “ \\\
oy N
h 'v,\\
0 \/ AN ) "‘N\
If I ‘;.
|
03, 02 0.4 06 0.8 1

time(sec)

Figure 5. Output trajectories under measurement noise

5. Conclusion

2nd-order PD-type ILC algorithms based on both
time-domain performance and iteration-domain perform-
ance are proposed. The convergence of the proposed
algorithms is proved. Also, it is shown by a numerical
example that the proposed method has robustness in the
presence of the state disturbance and measurement noise.
The proposed algorithms give more freedom for
adjustment of convergence speed and tracking accuracy
and can be considered as a generalization of the previous
works. The proposed ILC method will be useful when
ILC is applied to real control systems in the presence of
external disturbance. We will study ILC methods for the
dynamic systems of more general form and analyze the
learning performance according to the learning
parameters.
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