• Title/Summary/Keyword: Isotropic strain

Search Result 239, Processing Time 0.025 seconds

Yielding Curve of Isotropic and Anisotropic Consolidated Compacted Weathered Granite Soil (등방 및 비등방 압밀된 다짐풍화화강토의 항복곡선)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.103-115
    • /
    • 2002
  • During this study, various stress path tests in previous isotropic and anisotropic (compression and tension) stress histories are performed on weathered granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from various stress-strain curves(stress ratio-shear strain, volumetric strain, normalized energy and dissipated total energy curves). The shape and characteristics of isotropic and anisotropic yielding curves are examined. The main results are summarized as follows . 1) Yielding curries defined from stress ratio - normarized energy and dissipated total energy curves show almost perfect ellipse. 2) Directions of plastic strain incremental vector are not perpendicular to yielding curve. 3) Normarized energy and dissipated total energy spread with similar tendency with respect to yielding currie in stress space.

Effect of material hardening model for canister on finite element cask drop simulation for strain-based acceptance evaluation

  • Kim, Hune-Tae;Seo, Jun-Min;Seo, Ki-Wan;Yoon, Seong-Ho;Kim, Yun-Jae;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1098-1108
    • /
    • 2022
  • The effect of the material hardening model of the canister on a finite element vertical cask drop simulation is investigated for the strain-based acceptance evaluation. Three different hardening models are considered in this paper: the isotropic hardening model, the strain rate-dependent Johnson-Cook (J-C) hardening model, and the modified J-C model which are believed to be the most accurate. By comparing the results using the modified J-C model, it is found that the use of the J-C model provides similar or larger stresses and strains depending on the magnitudes of the strain and strain rate. The use of the isotropic hardening model always yields larger stresses and strains. For the strain-based acceptance evaluation, the use of the isotropic hardening model can produce highly conservative assessment results. The use of the J-C model, however, produces satisfactory results.

Buckling Analysis of Two Isotropic Layers Bonded to a Semi-Infinite Substrate (반무한체에 접합된 두 등방성 층의 좌굴 해석)

  • Jeong, Gyeong-Mun;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2108-2114
    • /
    • 2000
  • The buckling of two elastic layers bonded to a semi-infinite substrate under a transverse compressive plane strain is investigated. Incremental deformation theory, which considers the effect of the initial stress on the incremental stress field, is employed to describe the buckling behavior of both two isotropic layers and the semi-infinite substrate. The problem is converted to an eigenvalue-eigenvector case, from which the critical buckling strain and the buckling wavelength are obtained. The results are presented on the effects of the layer geometries and material properties on the buckling behavior.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions

  • Kim, In-Kweon;Kong, Chang-Duk;Han, Kyung-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.483-489
    • /
    • 2000
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of $[0/-60/60]_s$ laminates and $[30/-30/90]_s$ laminates were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of $[30/-30/90]_s$ is very different from that of $[0/-60/60]_s$. The experimental results are compared with the result obtained from the method for determining strain energy release rate components proposed by the authors. The analytical results were in good agreement with the experimental results. It is proved that the failure criterion based on the strain energy release rate is an appropriate approach to predict the initiation and growth of delaminations under cyclic loading.

  • PDF

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

Prediction of Soil Deformation with Nonlinear-Anisotropic Model (비선형 이방성 모델을 이용한 흙의 변형 거동 예측)

  • 윤충구;정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF