Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.006

Effect of material hardening model for canister on finite element cask drop simulation for strain-based acceptance evaluation  

Kim, Hune-Tae (Department of Mechanical Engineering, Korea University)
Seo, Jun-Min (Department of Mechanical Engineering, Korea University)
Seo, Ki-Wan (Department of Mechanical Engineering, Korea University)
Yoon, Seong-Ho (Department of Mechanical Engineering, Korea University)
Kim, Yun-Jae (Department of Mechanical Engineering, Korea University)
Oh, Chang-Young (Department of Joining Technology, Korea Institute of Materials Science)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 1098-1108 More about this Journal
Abstract
The effect of the material hardening model of the canister on a finite element vertical cask drop simulation is investigated for the strain-based acceptance evaluation. Three different hardening models are considered in this paper: the isotropic hardening model, the strain rate-dependent Johnson-Cook (J-C) hardening model, and the modified J-C model which are believed to be the most accurate. By comparing the results using the modified J-C model, it is found that the use of the J-C model provides similar or larger stresses and strains depending on the magnitudes of the strain and strain rate. The use of the isotropic hardening model always yields larger stresses and strains. For the strain-based acceptance evaluation, the use of the isotropic hardening model can produce highly conservative assessment results. The use of the J-C model, however, produces satisfactory results.
Keywords
Canister; Cask drop analysis; Austenitic stainless steel; Strain rate effect; Johnson-cook model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 ASME B&PV Code Committee, ASME B&PV Code, Sec. III, Appendices, Nonmandatory Appendix F, Rules for Evaluation of Service Loadings with Level D Service Limits, 2019.
2 C.C. Huang, T.Y. Wu, A study on dynamic impact of vertical concrete cask tipover using explicit finite element analysis procedures, Ann. Nucl. Energy 36 (2009) 213-221, https://doi.org/10.1016/j.anucene.2008.11.014.   DOI
3 Y.S. Lee, C.H. Ryu, H.S. Kim, Y.J. Choi, A study on the free drop impact of a cask using commercial FEA codes, Nucl. Eng. Des. 235 (2005) 2219-2226, https://doi.org/10.1016/j.nucengdes.2005.03.009.   DOI
4 K.S. Kim, J.S. Kim, K.S. Choi, T.M. Shin, H. Do Yun, Dynamic impact characteristics of KN-18 SNF transport cask - Part 1: an advanced numerical simulation and validation technique, Ann. Nucl. Energy 37 (2010) 546-559, https://doi.org/10.1016/j.anucene.2009.12.023.   DOI
5 J.H. Ko, J.H. Park, I.S. Jung, G.U. Lee, C.Y. Baeg, T.M. Kim, Shielding analysis of dual purpose casks for spent nuclear fuel under normal storage conditions, Nucl. Eng. Technol. 46 (2014) 547-556, https://doi.org/10.5516/NET.08.2013.039.   DOI
6 Dassault Systemes, SIMULIA User Assistance, Dassault Systems, Simulia Corp. Provid. RI, 2018, 2018.
7 T. Kim, H. Dho, C.Y. Baeg, G.U. Lee, Preliminary safety analysis of criticality for dual-purpose metal cask under dry storage conditions in South Korea, Nucl. Eng. Des. 278 (2014) 414-421, https://doi.org/10.1016/j.nucengdes.2014.08.008.   DOI
8 U.S. Nuclear Regulatory Commission, Standard Review Plan for Spent Fuel Dry Storage Systems and Facilities, 2020.
9 D.H. Kim, K.S. Seo, J.C. Lee, K.S. Bang, C.H. Cho, S.J. Lee, C.Y. Baeg, Finite element analyses and verifying tests for a shock-absorbing effect of a pad in a spent fuel storage cask, Ann. Nucl. Energy 34 (2007) 871-882, https://doi.org/10.1016/j.anucene.2007.04.012.   DOI
10 T.Y. Wu, H.Y. Lee, L.C. Kang, Dynamic response analysis of a spent-fuel dry storage cask under vertical drop accident, Ann. Nucl. Energy 42 (2012) 18-29, https://doi.org/10.1016/j.anucene.2011.12.016.   DOI
11 U.S. Nuclear Regulatory Commission, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material, 1989.
12 K. Sharma, D.N. Pawaskar, A. Guha, R.K. Singh, Optimization of cask for transport of radioactive material under impact loading, Nucl. Eng. Des. 273 (2014) 190-201, https://doi.org/10.1016/j.nucengdes.2014.03.021.   DOI
13 S.D. Snow, D.K. Morton, R. Keating, Strain-based acceptance criteria for energy-limited events, in: Proc. ASME PVP 2009, PVP2009-77122, 2009. Prague, Czech Republic, July.
14 M. Lin, Y. Li, Analysis of the interactions between spent fuel pebble bed and storage canister under impact loading, Nucl. Eng. Des. 361 (2020) 110548, https://doi.org/10.1016/j.nucengdes.2020.110548.   DOI
15 T.L. Teng, Y.A. Chu, F.A. Chang, H.S. Chin, M.C. Lee, The dynamic analysis of nuclear waste cask under impact loading, Ann. Nucl. Energy 30 (2003) 1473-1485, https://doi.org/10.1016/S0306-4549(03)00080-X.   DOI
16 K.S. Kim, J.S. Kim, K.S. Choi, T.M. Shin, H. Do Yun, Dynamic impact characteristics of KN-18 SNF transport cask - Part 2: sensitivity analysis of modeling and design parameters, Ann. Nucl. Energy 37 (2010) 560-571, https://doi.org/10.1016/j.anucene.2009.12.024.   DOI
17 C.Y. Lin, T.Y. Wu, C.C. Huang, Nonlinear dynamic impact analysis for installing a dry storage canister into a vertical concrete cask, Int. J. Pres. Ves. Pip. 131 (2015) 22-35, https://doi.org/10.1016/j.ijpvp.2015.04.006.   DOI
18 S.P. Kim, J. Kim, D. Sohn, H. Kwon, M. Shin, Stress-based vs. Strain-based safety evaluations of spent nuclear fuel transport casks in energy-limited events, Nucl. Eng. Des. 355 (2019) 110324, https://doi.org/10.1016/j.nucengdes.2019.110324.   DOI
19 ASME B&PV Code Committee, ASME B&PV Code, Sec. III, Appendices, Nonmandatory Appendix FF, Strain-Based Acceptance Criteria for Energy-Limited Events, 2019.
20 J.Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, H. Yang, A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates, Mater. Sci. Eng. 631 (2015) 214-219, https://doi.org/10.1016/j.msea.2015.02.010.   DOI
21 G. Geng, D. Ding, L. Duan, H. Jiang, A modified Johnson-Cook model of 6061-T6 Aluminium profile, Aust. J. Mech. Eng. (2020) 1-11, https://doi.org/10.1080/14484846.2020.1721966,00.   DOI
22 G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31-48, https://doi.org/10.1016/0013-7944(85)90052-9.   DOI
23 G.R. Cowper, P.S. Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams, Brown Univ Provid. Ri., 1957.
24 F.J. Zerilli, R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys. Appl. Phys. 61 (1987) 1816-1825, https://doi.org/10.1063/1.338024.   DOI
25 H. Huh, W.J. Kang, Crash-worthiness assessment of thin-walled structures with the high-strength steel sheet, Int. J. Veh. Des. 30 (2002) 1-21, https://doi.org/10.1504/IJVD.2002.002022.   DOI
26 H. Zhao, G. Gary, The testing and behaviour modelling of sheet metals at strain rates from 10-4 to 104 s-1, Mater. Sci. Eng. 207 (1996) 46-50, https://doi.org/10.1016/0921-5093(95)10017-2.   DOI
27 J.M. Seo, S.S. Jeong, Y.J. Kim, J.W. Kim, C.Y. Oh, H. Tokunaga, T. Kumagai, Modification of the Johnson-Cook Model for the Strain Rate Effect on Tensile Properties of 304/316 Austenitic Stainless Steels, J. Press. Vessel Technol., 2022, https://doi.org/10.1115/1.4050833 to be published.   DOI