• Title/Summary/Keyword: Isotropic hardening.

Search Result 111, Processing Time 0.035 seconds

Spring-back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Rule (혼합 등방-이동 경화규칙에 기초한 자동차용 알루미늄합금 및 Dual-Phase 강 판재의 스프링백 예측)

  • ;;;Chongmin kim;Michael L. Wenner
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • In order to evaluate spring-back behavior in automotive sheet forming processes, a panel shape idealized as a double S-rail has been investigated. After spring-back has been predicted for double S-rails using the finite element analysis, results has been compared with experimental measurements for three automotive sheets. To account for hardening behavior such as the Bauschinger and transient effects in addition to anisotropic behavior, the combined isotropic-kinematic hardening law based on the Chaboche type model and a recently developed non-quadratic anisotropic yield function have been utilized, respectively.

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

Springback prediction of friction stir welded DP590 steel sheets considering permanent softening behavior (영구 연화 거동을 고려한 마찰교반용접(FSW) 된 DP강 판재의 탄성 복원 예측)

  • Park, T.;Lee, W.;Chung, K.H.;Kim, J.H.;Kim, D.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.304-307
    • /
    • 2008
  • In order to evaluate the effect of permanent softening behavior on springback prediction, 2D-draw bending simulations were compared with experiments for friction stir welded DP590 steel sheets. To account fur the nonlinear hardening behavior, the combined isotropic-kinematic hardening law was utilized with and without considering the permanent softening behavior during reverse loading. Also, the non-quadratic orthotropic yield function, Yld2000-2d, was used to describe the anisotropic initial-yielding behavior of the base sheet while anisotropic properties of the weld zone were ignored for simplicity.

  • PDF

Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method (하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측)

  • Lee, M.G.;Chung, K.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, H.;Lee, M.G.;Chung, K.H.;Wagoners, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.494-499
    • /
    • 2009
  • The time-dependent constitutive law was utilized based on viscoelastic-plasticity to predict the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, R.;Lee, M.G.;Chung, K.H.;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • The time-dependent constitutive law was developed based on viscoelastic-plasticity to describe the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

  • PDF

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

Prediction of Three -Dimensional Behavior of Sand by Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 모래의 3차원거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 1994
  • A series of drained triaxial testis was performed on a Band by use of cubical triaxial apparatus, in which three principal stresses could be applied independently. The stress -strain behavior on the same stress path with cubical triaxial test was analyzed with application of the isotropic single hardening constitutive model presented by Lade. The behavior predicted by the constitutive model presented good coincidence with experimental results during poi mary loading. However, the predicted Mo윤ding and reloading behavior wan much different from results of cubical triaxial testy. That is, the softening part of the prediction might result in a rough approximation, since the plastic work parameters of single hardening model were based on the hardening portion of the data.

  • PDF

An Anisotropic Hardening Constitutive Model for Dilatancy of Cohesionless Soils : I. Formulation (사질토의 체적팽창을 고려한 비등방경화 구성모델 : I. 정식화)

  • 오세붕;박현일;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy of cohesionless soils. The constitutive model was proposed on the basis of an anisotropic hardening rule with generalized isotropic hardening rule. The shape of yield surface is a simple cylinder type in stress space and it makes the model practically useful. Flow rule was approximated by a concrete function on dilatancy. A peak stress ratio was defined to model brittle stress-strain relationships. The proposed model was formulated and implemented to calculate the stress-strain relationship from triaxial tests. In the companion paper the proposed model will be verified by comparison with the triaxial test results.