• Title/Summary/Keyword: Isotopic composition

Search Result 132, Processing Time 0.033 seconds

Geochemical and Isotopic Study of the Kumho River (금호강 하천수의 지구화학 및 동위원소 연구)

  • Kim, Yeong-Kyoo;Nam, Eun-Kyung
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.527-539
    • /
    • 2009
  • The Kumho River flows through volcanic and sedimentary rocks at upstream and downstream regions and also through industrial district including dyeing complex before it meets the Nakdong River, and as a result, many factors can influence the geochemistry of river water. The concentrations of dissolved ions generally increased as it flows downstream. The concentrations of cations are in the order of Ca>Na>Mg>K, and those of anions are $HCO_3$>$SO_4$>Cl>$NO_3$. These results show that the weathering of sandstone and shale containing carbonate including calcite caused the enrichment of Ca and $HCO_3$. At first 4 sampling sites, Si contents are relatively high mainly due to the weathering of silicate minerals of volcanic rocks. However, Na and $SO_4$ contents are higher at downstream sites due to the industrial and municipal sewage. Piper diagram also shows that the geochemical patterns changed from Ca-$HCO_3$ to Ca-Cl/Ca-$SO_4$ and Na-Cl/Na-$SO_4$ type. When comparing the samples collected in May and July, the concentrations of dissolved ions in July are generally lower than those in May, which indicates that dilution by precipitation played an important role. In July the relative concentration of Ca increased, indicating that Ca in soils probably from fertilizer were mixed into the river water by precipitation. The river waters are mainly from precipitation. The dissolved ions are mainly from weathering of carbonate minerals and pollutants from municipal sewage and discharged water from industrial complex. The composition of oxygen and deutrium isotope in July showed higher values, which is contrary to the amount effect, maybe due to Youngchon Dam. The nitrogen isotope showed lower values in July than those in May, which can be interpreted to indicate mixing of nitrate from soils and fertilizer in the cultivated land by the heavy rain. The isotope composition of nitrate increased downstream, indicating that the influence of sewage and animal manure also increased downstream.

Origin and Hydrochemical Characteristics of Natural Carbonated Water at Seoqwipo, Jeju Island (제주도 서귀포지역 천연탄산수의 기원과 수리화학특성)

  • Jeong, Chan Ho;Lee, Yong Cheon;Lee, Yu Jin;Choi, Hyeon Young;Koh, Gi Won;Moon, Duk Chul;Jung, Cha Youn;Jo, Si Beom
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.515-529
    • /
    • 2016
  • In this study, geochemical composition, CFCs (Chlorofluorocarbons), ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ isotopes and noble gases isotopes (He, Ne) were analyzed to determine their recharge age, source of $CO_2$ gas and noble gases of carbonated hot spring water and carbonated-water samples collected in the Seoqwipo of the Jeju. The pH of the carbonated waters ranges from 6.21 to 6.84, and the high electrical conductivity range ($1,928{\sim}4,720{\mu}S/cm$). Their chemical composition is classified as $Mg(Ca,\;Na)-HCO_3$ and $Na(Ca,\;Mg)-HCO_3$ types. As a result of the calculation of groundwater age using CFCs concentrations as an environmental tracer, the carbonated water and groundwater were estimated to be about 47.5~57.2 years and about 30.3~49.5 years, respectively. The ${\delta}^{13}C$ values of carbonated water range from -1.77 to -7.27‰, and are plotted on thr deep-seated field or the mixing field of the deep-seated and inorganic origin. Noble gases isotopic ($^3He/^4He$, $^4He/^{20}Ne$) ratio shows that helium gas of carbonated hot waters comes from deep-seated magma origin.

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암(황송푸 현무암)의 암석학적/지화학적 특성)

  • Kim, Eunju;Hirata, Chiharu;Jeong, Hoon Young;Kil, Youngwoo;Yang, Kyounghee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.307-324
    • /
    • 2020
  • Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Identification of Major Crude Oils Imported into Korea using Molecular and Stable Carbon Isotopic Compositions (분자지표 및 탄소안정동위원소 조성비를 이용한 국내 수입 주요 원유의 식별)

  • Kim, Eun-Sic;An, Jun-Geon;Kim, Gi-Beum;Shim, Won-Joon;Joo, Chang-Kyu;Kim, Moon-Koo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.247-256
    • /
    • 2012
  • Stable carbon isotope ratio of oil components are known to be unaffected by weathering processes and thus has been widely used to determine the origin of spilled oil. In this study, molecular index and composition of stable carbon isotope in 15 crude oils and petroleum product were analyzed and used as oil fingerprints to determine the discriminating power of each fingerprinting method among target crude oils. Through the fingerprints of alkane distribution only Bintulu and B-C(1%) were distinguishable from other crude oils. The pristane/phytane ratio can classify the crude oils into three groups but differentiation of crude oils within a group was impossible using the ratio. The crude oils of A.L., A.S.L., Foroozan and B-C(1%) were differentiated from the other oils using PAH source recognition indexes of C2D/C2P and C3D/C3P. The usage of 4-mD/1-mD and 2/3-mD/1-mD ratio was able to distinguish A.S.L., Bintulu and Oman from the other crude oils. However the PAH source recognition ratios in the other crude oils were similar and thus they were impractical to be used for source identification among the target crude oils. Stable carbon isotope ratios of alkanes were able to uniquely specify each crude oil in the plot of ${\delta}^{13}C_{C21}$ and ${\delta}^{13}C_{C25}$ except A.L., A.M., Qatar-Marine, B-C(1%). The oil fingerprinting method using stable carbon isotope ratios of individual alkane compounds showed more discriminating power among the target crude oils than the conventional source recognition indexes of PAHs or alkanes.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.