DOI QR코드

DOI QR Code

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area

백두산 지역의 마이오세 알칼리 현무암(황송푸 현무암)의 암석학적/지화학적 특성

  • Kim, Eunju (Department of Geological Sciences, Pusan National University) ;
  • Hirata, Chiharu (Department of Geological Sciences, Pusan National University) ;
  • Jeong, Hoon Young (Department of Geological Sciences, Pusan National University) ;
  • Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Yang, Kyounghee (Department of Geological Sciences, Pusan National University)
  • Received : 2020.07.13
  • Accepted : 2020.11.30
  • Published : 2020.12.31

Abstract

Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.

백두산 북동쪽으로 약 25 km 떨어져있는 지역의 마이오세 현무암(황송푸 현무암, 20 Ma)에 대한 주성분원소와 미량원소, Sr-Nd 동위원소 조성에 대한 연구가 수행되었다. 황송푸 현무암은 비현정질 암석으로 Na2O+K2O=3.5~4.7 wt.%, MgO=9.9~11.1 wt.%을 보인다. Mg 성분이 풍부한 감람석(Mg#=75~86)과 단사휘석(Mg#=72~85), Ca성분이 풍부한 사장석 미반정을 함유하고 있다. 이 현무암은 경희토류원소 부화가 나타나는 해양도현무암과 유사한 미량원소 패턴을 보이고, 높은 Cr(394~479 ppm)과 Ni(389~519 ppm) 성분, Nb-Ta 부화 이상치, Rb과 Ba을 포함하는 LILE가 부화되어 있는 특징을 보인다. 이러한 조직과 주성분원소/미량원소조성 데이터는 황송푸 현무암이 알칼리 마그마 계열에 속하는 원시적인 마그마임을 나타낸다. 황송푸 마그마는 상승하는 도중에 분별결정작용, 지각오염, 마그마혼합과 같은 분화작용을 거의 경험하지 않은 액상선 환경에서 고화된 암석으로 이는 황송푸 현무암이 부분용융이 일어났던 맨틀에서의 특성을 지니고 있음을 반영한다. 황송푸 현무암의 높은 (Gd/Yb)sample/(Gd/Yb)PM 비율(2.8~3.5)은 황송푸 현무암이 판내부 환경에서 형성된 마그마로써 석류석이 존재하는 맨틀에서 페리도타이트의 낮은 부분용융(3~5%)으로 형성되었다. BSE보다 모두 높은 143Nd/144Nd와 87Sr/86Sr 성분을 보이는 황송푸 현무암은 이 지역 아래 부화된 맨틀영역이 존재한다는 것을 의미한다. 황송포 현무암은 과거(ancient)의 태평양판 섭입대에 의해 공급되어 재활용된 해양지각 혹은 대륙지각으로 교대작용을 경험한 맨틀에서 부분용융에 의해 형성되었다.

Keywords

Acknowledgement

세심한 심사를 통해 본 논문의 수준을 높여주신 윤성효 교수님과 익명의 심사위원께 깊은 감사를 드립니다. 본 연구는 부산대학교 기본연구지원사업 연구비(2년) 에 의하여 연구되었음.

References

  1. Allegre, C.J. and Turcotte, D.L., 1985, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophysical Research Letters, 12, 207-210. https://doi.org/10.1029/GL012i004p00207
  2. Best, M.G., 2003, Igneous and Metamorphic Petrology. Blackwell, Oxford, 752p.
  3. Bloomfield, A.L. and Arculus, R.J., 1989, Magma mixing in the San Francisco volcanic field, AZ: Petrogenesis of the O'Leary Peak and Strawberry Crater Volcanics. Contributions to Mineralogy and Petrology, 102, 429-453. https://doi.org/10.1007/BF00371086
  4. Choi, H.-O., Choi, S.-H., Lee, Y. S., Ryu, J.-S., Lee, D-C., Lee, S-G., Sohn, Y. K. and Liu, J.-q., 2020, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, 78, 156-171. https://doi.org/10.1016/j.gr.2019.08.004
  5. Choi, S-H., Mukasa, S.B., Kwon, S-T., Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology 232, 134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014
  6. Chough, S.-K., Kwon, S.-T., Ree, J.-H. and Choi, D.-K., 2000, Tectonic and sedimentary evoludion of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  7. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen and Unwin, London, 12-41.
  8. Faure, G. and Mensing, T.M., 2005, Isotopes: Principles and Applications, Wiley, Hoboken, 928p.
  9. Helz, R.T., 1987, Character of olivines in lavas of the 1959 eruption of Kilauea volcano, and its bearing on eruption dynamics. US Geological Survey Professional Paper, 1350, 691-722.
  10. Heo, S.-Y., Yang, K.-H. and Jeong, H.-Y.. 2012, Hydrous minerals (phlogopite and amphibole) from basaltic Rocks, Jeju Island: Evidences for modal metasomatism. Journal of the Petrological Society of Korea, 21, 13-30. https://doi.org/10.7854/JPSK.2012.21.1.013
  11. Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986, Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33-45. https://doi.org/10.1016/0012-821X(86)90038-5
  12. Hofmann, A.W., 1997, Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219-229. https://doi.org/10.1038/385219a0
  13. Hofmann, A.W., 2005. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson, R.W. (Ed.), TheMantle andCore. Treatise on Geochemistry. Elsevier-Pergamon, pp. 61-101.
  14. Jolivet, L., Tamaki, K. and Fournier, M., 1994, Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysics Research, 99, 22237-22259. https://doi.org/10.1029/93JB03463
  15. Ionov, D.A., and Hofmann, A.W., 1995, Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131, 341-356. https://doi.org/10.1016/0012-821X(95)00037-D
  16. Kelemen, P.B., Yogodzinski, G.M. and Scholl, D.W., 2003, Along-strike variation in the Aleutian Island arc: Genesis of high Mg# andesite and implications for continental crust. In: Inisde the Subduction Factory (eds. Eiler, J.), Geophysical Monograph 138, American Geophysical Union, 223-276.
  17. Keppler, H., 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237-240. https://doi.org/10.1038/380237a0
  18. Kim, E., Park, G., Kim, S.-W., Kil, Y.-W. and Yang, K.-H., 2017, Petrology and geochemistry of peridotite xenoliths from Miocene alkaline basalt near the Mt. Baekdu Area. Journal of the Petrological Society of Korea, 25, 311-325. https://doi.org/10.7854/JPSK.2016.25.4.311
  19. Kim, J-I., Choi, S., Koh, G., Park, J. and Ryu, J-S., 2019, Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos, 326-327, 476-490. https://doi.org/10.1016/j.lithos.2018.12.034
  20. Kim, K.-H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B., Youn, J.-S. and Song, J.-H., 2005, He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochemical Journal, 39, 341-356. https://doi.org/10.2343/geochemj.39.341
  21. Kuritani, T., Ohtani, E. and Kimura, J.-I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4, 713-716. https://doi.org/10.1038/ngeo1250
  22. Kuritani, T., Kimuira J.-I., Miyamoto, T., Wei, H., Shimano, T., Maeno, F., Jin, X. and Taniguchi, H., 2009, Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: Implications from the Changbaishan shield basalts, northeast China. Lithos, 112, 247-258. https://doi.org/10.1016/j.lithos.2009.02.007
  23. Miyashiro, A., 1978, Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66, 91-104. https://doi.org/10.1007/BF00376089
  24. Lee, D., 1991, The eruption stratigraphy and volcanism in the Mt. Baekdu area (abstract). '91 International science and technology meeting, The Korean-Chinese scientific association, 21p.
  25. Liu, T.G., 1983, The study on cenozoic volcanism in the Jangbaksan, the survey of geology in academy house, China, 343-355 (in Chinese).
  26. Otofuji, Y., Mastuda, T. and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-rifting process of the Japan arc. Earth and Planetary Science Letters, 72, 265-277. https://doi.org/10.1016/0012-821X(85)90108-6
  27. Park, J.B., Park, K.H., Cho, D.L. and Koh, G.W., 1999, Petrochemical classification of the Quaternary volcanic rocks in Cheju Island, Korea. Journal of the Geological Society of Korea, 35, 253-264.
  28. Park, K., Choi, S.-H., Cho, M. and Lee, D.C., 2017, Evolution of the lithospheric mantle beneath Mt. Baekdu(changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos, 286-287, 330-344. https://doi.org/10.1016/j.lithos.2017.06.011
  29. Sager, W.W., Handschumacher, D.W., Hilde, T.W.C. and Bracey, D.R., 1988, Tectonic evolution of the northern Pacific plate and Pacific-Farallon Izanagi triple junction in the Late Jurassic and Early Cretaceous (M21-M10). Tectonophysics, 155, 345-364. https://doi.org/10.1016/0040-1951(88)90274-0
  30. Steinberger, B. and Gaina, C., 2007, Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology, 35, 407-410. https://doi.org/10.1130/g23383a.1
  31. Stracke A., Hofmann A. W., and Hart S. R., 2005, FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6. doi:10.1029/2004GC000824.
  32. Sun, S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds. Saunder, A.D. and Norry, M.J.). Geological Society of London Special Publication, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  33. Tamaki, K., Suyehiro, K., Allan, J., Ingle, Jr. J.C. and Pisciotto, K.A., 1992, Tectonic synthesis and implications of Japan Sea ODP drilling. In Proceedings of the Ocean Drilling Program Scientific Result, 127/128 (eds. Tamaki, K., Suyehiro, K., Allan, J. and McWilliams, M.), College Station, Texas (Ocean Drilling Program), 1333-1348.
  34. Tang, Y., Obayashi, M., Niu, F., Grand, S.P., Chen, Y.J., Kawakatsu, H., Tanaka, S., Ning, J. and Ni, J.F., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7, 470-475. https://doi.org/10.1038/ngeo2166
  35. Tang, Y.J., Zhang, H.F. and Ying, J.F., 2012, Secular evolution of lithospheric mantle beneath the central North China craton: Implication from basaltic Rocks and their xenoliths. In Petrology-New perspectives and applications (eds. Al-Juboury, A.I.), InTech, 1-20.
  36. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.-W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553. https://doi.org/10.1093/petrology/egh087
  37. Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.-H. and Jin, B., 2007, Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96, 315-324. https://doi.org/10.1016/j.lithos.2006.10.004
  38. Winter, J.D., 2010, Principles of Igneous and Metamorphic Petrology (Second edition). Prentice Hall, New Jersey.
  39. Workman, R. K., Hart, S. R., Jackson, M., Regelous, M., Farley, K. A., Blusztajn, J., Kurz, M., and Staudigel, H., 2004, Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochimica et Cosmochimica Acta. 5. doi:10.1029/2003GC000623.
  40. Yang, H.-J., Frey, F.A., Clague, D.A. and Garcia, M.O., 1999, Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones. Contributions to Mineralogy and Petrology, 135, 355-372. https://doi.org/10.1007/s004100050517
  41. Ye, H., Zhang, B. and Mao, F., 1987, The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133, 217-227. https://doi.org/10.1016/0040-1951(87)90265-4
  42. Yokoyama T., Aka, F.T., Kusakabe, M., and Nakamura, E., 2007, Plume-lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Constraints from 238U-230Th-226Ra and Sr-Nd-Pb isotope systematics. Geochimica et Cosmochimica Acta 71 (2007) 1835-1854. https://doi.org/10.1016/j.gca.2007.01.010
  43. Yun, S.-H. and Koh, J.-S., 2014, Petrochemical characteristics of volcanic rocks of historic era at Mt. Baekdusan. Journal of the Geological Society of Korea, 50, 753-769. https://doi.org/10.14770/jgsk.2014.50.6.753
  44. Yun, S.-H., Won, C.-K. and Lee, M.-W., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paekdu area. Journal of the Geological Society of Korea, 29, 291-307.
  45. Yun, S.-H., 2019, Phenocryst composition of mafic volcanic rocks in the Wangtiane volcano. The Journal of the Petrological Society of Korea, 28(1), 15-24. https://doi.org/10.7854/JPSK.2019.28.1.15
  46. Zhao, D., Tian, Y., Lei, J., Liu, L. and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173, 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
  47. Zindler, A. and Hart, S., 1986, Chemical geodynamics. Annual review of earth and planetary sciences, 14, 493-591. https://doi.org/10.1146/annurev.ea.14.050186.002425