Browse > Article
http://dx.doi.org/10.22807/KJMP.2020.33.4.307

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area  

Kim, Eunju (Department of Geological Sciences, Pusan National University)
Hirata, Chiharu (Department of Geological Sciences, Pusan National University)
Jeong, Hoon Young (Department of Geological Sciences, Pusan National University)
Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University)
Yang, Kyounghee (Department of Geological Sciences, Pusan National University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.33, no.4, 2020 , pp. 307-324 More about this Journal
Abstract
Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.
Keywords
Mt. Baekdu; Miocene alkaline basalt; a primitive nature; OIB-like; enriched mantle lithosphere;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allegre, C.J. and Turcotte, D.L., 1985, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophysical Research Letters, 12, 207-210.   DOI
2 Yang, H.-J., Frey, F.A., Clague, D.A. and Garcia, M.O., 1999, Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones. Contributions to Mineralogy and Petrology, 135, 355-372.   DOI
3 Ye, H., Zhang, B. and Mao, F., 1987, The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133, 217-227.   DOI
4 Yokoyama T., Aka, F.T., Kusakabe, M., and Nakamura, E., 2007, Plume-lithosphere interaction beneath Mt. Cameroon volcano, West Africa: Constraints from 238U-230Th-226Ra and Sr-Nd-Pb isotope systematics. Geochimica et Cosmochimica Acta 71 (2007) 1835-1854.   DOI
5 Yun, S.-H. and Koh, J.-S., 2014, Petrochemical characteristics of volcanic rocks of historic era at Mt. Baekdusan. Journal of the Geological Society of Korea, 50, 753-769.   DOI
6 Yun, S.-H., Won, C.-K. and Lee, M.-W., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paekdu area. Journal of the Geological Society of Korea, 29, 291-307.
7 Yun, S.-H., 2019, Phenocryst composition of mafic volcanic rocks in the Wangtiane volcano. The Journal of the Petrological Society of Korea, 28(1), 15-24.   DOI
8 Best, M.G., 2003, Igneous and Metamorphic Petrology. Blackwell, Oxford, 752p.
9 Bloomfield, A.L. and Arculus, R.J., 1989, Magma mixing in the San Francisco volcanic field, AZ: Petrogenesis of the O'Leary Peak and Strawberry Crater Volcanics. Contributions to Mineralogy and Petrology, 102, 429-453.   DOI
10 Choi, H.-O., Choi, S.-H., Lee, Y. S., Ryu, J.-S., Lee, D-C., Lee, S-G., Sohn, Y. K. and Liu, J.-q., 2020, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, 78, 156-171.   DOI
11 Choi, S-H., Mukasa, S.B., Kwon, S-T., Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology 232, 134-151.   DOI
12 Helz, R.T., 1987, Character of olivines in lavas of the 1959 eruption of Kilauea volcano, and its bearing on eruption dynamics. US Geological Survey Professional Paper, 1350, 691-722.
13 Zhao, D., Tian, Y., Lei, J., Liu, L. and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173, 197-206.   DOI
14 Zindler, A. and Hart, S., 1986, Chemical geodynamics. Annual review of earth and planetary sciences, 14, 493-591.   DOI
15 Chough, S.-K., Kwon, S.-T., Ree, J.-H. and Choi, D.-K., 2000, Tectonic and sedimentary evoludion of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175-235.   DOI
16 Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen and Unwin, London, 12-41.
17 Faure, G. and Mensing, T.M., 2005, Isotopes: Principles and Applications, Wiley, Hoboken, 928p.
18 Heo, S.-Y., Yang, K.-H. and Jeong, H.-Y.. 2012, Hydrous minerals (phlogopite and amphibole) from basaltic Rocks, Jeju Island: Evidences for modal metasomatism. Journal of the Petrological Society of Korea, 21, 13-30.   DOI
19 Hofmann, A.W., 1997, Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219-229.   DOI
20 Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986, Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33-45.   DOI
21 Hofmann, A.W., 2005. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson, R.W. (Ed.), TheMantle andCore. Treatise on Geochemistry. Elsevier-Pergamon, pp. 61-101.
22 Jolivet, L., Tamaki, K. and Fournier, M., 1994, Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysics Research, 99, 22237-22259.   DOI
23 Ionov, D.A., and Hofmann, A.W., 1995, Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131, 341-356.   DOI
24 Kuritani, T., Ohtani, E. and Kimura, J.-I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4, 713-716.   DOI
25 Kelemen, P.B., Yogodzinski, G.M. and Scholl, D.W., 2003, Along-strike variation in the Aleutian Island arc: Genesis of high Mg# andesite and implications for continental crust. In: Inisde the Subduction Factory (eds. Eiler, J.), Geophysical Monograph 138, American Geophysical Union, 223-276.
26 Keppler, H., 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237-240.   DOI
27 Kim, E., Park, G., Kim, S.-W., Kil, Y.-W. and Yang, K.-H., 2017, Petrology and geochemistry of peridotite xenoliths from Miocene alkaline basalt near the Mt. Baekdu Area. Journal of the Petrological Society of Korea, 25, 311-325.   DOI
28 Kim, J-I., Choi, S., Koh, G., Park, J. and Ryu, J-S., 2019, Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos, 326-327, 476-490.   DOI
29 Kim, K.-H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B., Youn, J.-S. and Song, J.-H., 2005, He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochemical Journal, 39, 341-356.   DOI
30 Kuritani, T., Kimuira J.-I., Miyamoto, T., Wei, H., Shimano, T., Maeno, F., Jin, X. and Taniguchi, H., 2009, Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: Implications from the Changbaishan shield basalts, northeast China. Lithos, 112, 247-258.   DOI
31 Miyashiro, A., 1978, Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66, 91-104.   DOI
32 Lee, D., 1991, The eruption stratigraphy and volcanism in the Mt. Baekdu area (abstract). '91 International science and technology meeting, The Korean-Chinese scientific association, 21p.
33 Steinberger, B. and Gaina, C., 2007, Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology, 35, 407-410.   DOI
34 Liu, T.G., 1983, The study on cenozoic volcanism in the Jangbaksan, the survey of geology in academy house, China, 343-355 (in Chinese).
35 Otofuji, Y., Mastuda, T. and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-rifting process of the Japan arc. Earth and Planetary Science Letters, 72, 265-277.   DOI
36 Park, J.B., Park, K.H., Cho, D.L. and Koh, G.W., 1999, Petrochemical classification of the Quaternary volcanic rocks in Cheju Island, Korea. Journal of the Geological Society of Korea, 35, 253-264.
37 Park, K., Choi, S.-H., Cho, M. and Lee, D.C., 2017, Evolution of the lithospheric mantle beneath Mt. Baekdu(changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos, 286-287, 330-344.   DOI
38 Sager, W.W., Handschumacher, D.W., Hilde, T.W.C. and Bracey, D.R., 1988, Tectonic evolution of the northern Pacific plate and Pacific-Farallon Izanagi triple junction in the Late Jurassic and Early Cretaceous (M21-M10). Tectonophysics, 155, 345-364.   DOI
39 Stracke A., Hofmann A. W., and Hart S. R., 2005, FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6. doi:10.1029/2004GC000824.   DOI
40 Sun, S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds. Saunder, A.D. and Norry, M.J.). Geological Society of London Special Publication, 42, 313-345.   DOI
41 Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.-W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.   DOI
42 Tamaki, K., Suyehiro, K., Allan, J., Ingle, Jr. J.C. and Pisciotto, K.A., 1992, Tectonic synthesis and implications of Japan Sea ODP drilling. In Proceedings of the Ocean Drilling Program Scientific Result, 127/128 (eds. Tamaki, K., Suyehiro, K., Allan, J. and McWilliams, M.), College Station, Texas (Ocean Drilling Program), 1333-1348.
43 Tang, Y., Obayashi, M., Niu, F., Grand, S.P., Chen, Y.J., Kawakatsu, H., Tanaka, S., Ning, J. and Ni, J.F., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7, 470-475.   DOI
44 Tang, Y.J., Zhang, H.F. and Ying, J.F., 2012, Secular evolution of lithospheric mantle beneath the central North China craton: Implication from basaltic Rocks and their xenoliths. In Petrology-New perspectives and applications (eds. Al-Juboury, A.I.), InTech, 1-20.
45 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.-H. and Jin, B., 2007, Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96, 315-324.   DOI
46 Winter, J.D., 2010, Principles of Igneous and Metamorphic Petrology (Second edition). Prentice Hall, New Jersey.
47 Workman, R. K., Hart, S. R., Jackson, M., Regelous, M., Farley, K. A., Blusztajn, J., Kurz, M., and Staudigel, H., 2004, Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochimica et Cosmochimica Acta. 5. doi:10.1029/2003GC000623.   DOI