• Title/Summary/Keyword: Isotopic Analysis

Search Result 162, Processing Time 0.023 seconds

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere (생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용)

  • Han, Gwang-Hyun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2010
  • In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.

Study on Decay Characteristics Change of Spent Fuel Materials by DUPIC Fuel Cycle (DUPIC핵연료주기에 의한 사용 후 경수로핵연료의 방사선적 특성변화 분석)

  • Choi, Jong-Won;Ko, Won-Il;Lee, Jae-Sol;Park, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.27-39
    • /
    • 1996
  • The change in spent fuel characteristics by DUPIC fuel cycle(burnup of spent PWR fuel again in CANDU) is examined with time elapse since discharge. Major characteristics examined include isotopic concentration, radioactivity, decay heat radiotoxicity and radiation source-term of spent fuel material, which is existing in a type of spent PWR and DUPIC fuel. Behaviors of major nuclides contributing to such changes are also analyzed in terms of radionuclide concentration. From the analysis, the change in radionuclide concentration by DUPIC shows approximately 2% decrease in actinides concentration and 20% increase in fission products concentration. Radioactivity and decay heat of spent DUPIC fuel does not depend upon radionuclides concentrations, which is a unique in sence of general characteristics of spent fuel. In terms of gamma spectrum, spent DUPIC fuel shows lower values than that of spent PWR fuel by 40 to 50% in the range of $0.01{\sim}0.575$ MeV but much higher over 3.5MeV. Neutron Intensities of both spent fuels are mainly determined by $({\alpha},\;n)$ reaction and spontaneous fission reaction of actinides. Of them, especially, the spontaneous fission reaction Is a major neutron source-term, which causes that neutron intensities of spent DUPIC fuel $having{\sim}3.3$ times higher Cm-244 concentration are ${\sim}4$ times higher than that of spent PWR fuel.

  • PDF

The Applicability of Stable Isotope Analyses on Sediments to Reconstruct Korean Paleoclimate (우리나라의 고기후 복원을 위한 습지 퇴적물의 안정동위원소 분석 가능성 연구)

  • Park, Jung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.4
    • /
    • pp.477-494
    • /
    • 2008
  • Stable isotope analyses on lake or wetland sediments are useful to reconstruct paleoclimate. Organic and inorganic carbonates obtained from lake sediment are isotopically analyzed to get oxygen and carbon isotopic ratios. Oxygen isotope ratios can be used to quantitatively and qualitatively reconstruct paleo-temperature or humidity while carbon isotope ratios be used to reveal environmental changes around the lake or human impacts on the area. Peat mosses in peat bogs are nice samples for the carbon isotope analysis, which derives paleo-temperature and paleo-atmospheric $CO_2$ changes. In coastal area, the reconstruction of past sea-level is possible because terrestrial originated organic matter is carbon isotopically different from marine originated organic matter. Also, scientists can do research on Asian Monsoon based on the fact that $\delta^{13}C$ of C3 plants and C4 plants are consistently different each other and that they are distributed differently with respect to salinity. In Korea, paleoenvironmental studies using stable isotopes are not popular yet because of low academic interests on the methodology and difficulties of obtaining proper sediment samples. Interesting results can be produced to answer paleoenvironmental questions of Korea if scientists isotopically analyze sediment cores from a paleo-lake such as Hanon in Jeju island, peat bogs such as Mujechi-Neup and Yong-Neup, and coastal wetlands.

Holocene Environments of the Buyeo Area Choongnam Province: Reconstructed from Carbon Isotopic and Magnetic Evidences from Alluvial Sequences (충남 부여지역의 홀로세 기후변화 -탄소동위원소분석과 대자율분석을 이용하여-)

  • Park, Kyeong;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.4
    • /
    • pp.396-412
    • /
    • 2011
  • Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from a thick section of the Holocene alluvial fan deposit in Gatap-ri, Buyeo. According to ${\delta}^{13}C$ analyses, five minor climate fluctuations can be determined. From the stage I to stage VI, climate changes are as follows: cool-dry, warm-humid, cool-dry, warm humid, drier than stage IV, and finally more humid environment than stage V. According to magnetic susceptibility records, four different stages can be identified, among which stage ii shows the highest susceptibility. Stage-i deposit is derived from sediments of back marsh-type wetland. Stage-ii and stage-iii deposits, however, show higher magnetic susceptibility because magnetite-enriched soil from weathered upland was transported to the area to form an alluvial fan deposits. Stage-iv deposit is comparable to the modern plow horizon.

Organic Analysis of Charred Residues on the Pottery in the Proto-Three Kingdom from Joong-do Site, Chuncheon (춘천 중도 유적에서 출토된 원삼국시대 토기 탄착물에 대한 화학적 분석)

  • Kang, Soyeong;Jee, Sanghyun;Kim, Yun Ji;Chang, Hong Sun
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.437-444
    • /
    • 2013
  • We studied for the chemical characterizations of the charred residues obtained from the ancient potteries in the Proto-Three Kingdom period from archaeological sites in Joong-do, Chuncheon. Organic components of the charred residues were extracted and analysed using mass spectrometry and infrared spectroscopy. Lipid profiles from these samples were not identified in gas chromatography-mass spectrometry. Bulk stable isotope analyses of charred residues was used to infer an average values of the foods prepared. The average carbon isotope values (${\delta}^{13}C$) of the residues are $-14.7{\pm}2.8$‰ (ranging from -8.7‰ to -18.4‰, n=9), and nitrogen isotope values (${\delta}^{15}N$) are $6.2{\pm}1.1$‰ (ranging from -4.4‰ to -7.6‰, n=9). This is the first approach to analyse charred residues using stable isotopic method in Korea. Charred food residues on the interior surface of archaeological pottery can provide valuable information about pottery use and dietary habits of its population.

Hydrogeochemical Characteristics of Groundwater on Well Depth Variation in the Heunghae Area, Korea (심도 변화에 따른 흥해지역 지하수의 수리 지화학적 특성)

  • Yun Uk;Cho Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.391-405
    • /
    • 2005
  • Chemical and isotopic analysis for stream water, shallow groundwater, intermediate groundwater and deep groundwater was carried out to grasp hydrogeochemical characteristics of groundwater in the Heunghae area, Pohang city. Water type of stream water and shallow groundwaters is typified as Ca-Cl type, intermediate groundwater is $Na-HCO_3$, and deep groundwater is prominent in Wa-Cl type. $HCO_3^-\;and\;SiO_2$ in shallow groundwater are originated from weathering of silicate minerals, whereas those of deep groundwaters are resulted from weathering of carbonate minerals. Ca and Mg ions in both shallow and deep groundwaters are resulted from weathering of calcite and dolomite. $SO_4^{2-}$ in shallow groundwater is originated mainly from pyrite oxidation. As well depth increases, pH and TDS increase, but Eh and DO decrease. Alkali metal contents(K, Na, Li) increases as well depth increases, but alkali earth metal(Mg, Ca) and hi concentrations increase as well depth decreases. Anions, halogen elements(F, Cl, Br), and $HCO_3$ contents increase as well depth increases. The average stable isotope value of the groundwater of each depth is as follows; deep groundwater: ${\delta}^{18}O=-10.1\%o,\;{\delta}D=-65.8\%_{\circ}$, intermediate groundwater: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$, shallow groungwater : ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$, surface water : ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$ respectively.

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Isotopic Differences among Zooplankton Taxa and Seasonal Variation of Zooplankton Community Coexisting with Microcystis (Microcystis와 공존하는 동물플랑크톤 군집의 계절변화 및 안정동위원소비의 차이)

  • Lee, Jae-Yong;Kim, Jai-Iu;Jung, Yu-Kyong;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • We used stable isotope analysis to investigate the hypothesis that zooplankton were not able to utilize Microcystis as a food source. We also studied seasonal variation of the zooplankton community in a eutrophic Wangsong reservoir. The dominant copepod species changed from Cyclops vicinus to Thermocyclops taihokuensis. Density of zooplankton was suppressed by high density of Microcystis in June and the density of phytoplankton and chlorophyll a concentration was lowest in July. The difference in $\delta^{13}C$ and $\delta^{15}N$ between cladocerans (Daphnia galeata and Bosmina longirostris) and copepods showed the maximum difference of $12^{\circ}/_{\circ\circ}$ and $4^{\circ}/_{\circ\circ}$, respectively, indicating different energy sources and trophic positions between two taxonomic groups. The difference in $\delta^{13}C$ between Microcystis and zooplankton ranged from $3{\sim}7^{\circ}/_{\circ\circ}$, supporting the hypothesis that Microcystis could not be used as food source of zooplankton.

C/N/O/S stable isotopic and chemometric analyses for determining the geographical origin of Panax ginseng cultivated in Korea

  • Chung, Ill-Min;Kim, Jae-Kwang;Lee, Ji-Hee;An, Min-Jeong;Lee, Kyoung-Jin;Park, Sung-Kyu;Kim, Jang-Uk;Kim, Mi-Jung;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • Background: The geographical origin of Panax ginseng Meyer, a valuable medicinal plant, is important to both ginseng producers and consumers in the context of economic profit and human health benefits. We, therefore, aimed to discriminate between the cultivation regions of ginseng using the stable isotope ratios of C, N, O, and S, which are abundant bioelements in living organisms. Methods: Six Korean ginseng cultivars (3-yr-old roots) were collected from five different regions in Korea. The C, N, O, and S stable isotope ratios in ginseng roots were measured by isotope ratio mass spectrometry, and then these isotope ratio profiles were statistically analyzed using chemometrics. Results: The various isotope ratios found in P. ginseng roots were significantly influenced by region, cultivar, and the interactions between these two factors ($p{\leq}0.001$). The variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ in ginseng roots was significant for discriminating between different ginseng cultivation regions, and ${\delta}^{18}O$ and ${\delta}^{34}S$ were also affected by both altitude and proximity to coastal areas. Chemometric model results tested in this study provided discrimination between the majority of different cultivation regions. Based on the external validation, this chemometric model also showed good model performance ($R^2=0.853$ and $Q^2=0.738$). Conclusion: Our case study elucidates the variation of C, N, O, and S stable isotope ratios in ginseng root depending on cultivation region. Hence, the analysis of stable isotope ratios is a suitable tool for discrimination between the regional origins of ginseng samples from Korea, with potential application to other countries.

Mineralogical and Geochemical Properties of Clay-silt sediments Exposed in Jangdongri, Naju, Korea (전남 나주시 장동리 지역에 노출된 적갈색 점토-실트 퇴적물의 광물 및 지화학적 특성)

  • Kwak, Tae-Hun;Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • Reddish brown clay-silt sediments covered granitoid weathering crust in the Jangdongri area, Naju, Korea. Mineralogical and geochemical properties of the ~2 m sediment section were investigated. The sediments were composed mainly of quartz (50%) and clay minerals (45%) with minor contents of K-feldspar, goethite, hematite, and gibbsite. The clay minerals were illite, illite-smectite mixed-layers, vermiculite, hydroxy-Al vermiculite, kaolinite, and halloysite. Mineral composition varied little through the section with the minor upward enrichment of plagioclase and chlorite. Abundant illitic clay minerals indicated the remote source of the sediments because clays derived by granite weathering in Korea were dominated by kaolin minerals. A comparison with the mineral composition of Asian dust (Hwangsa) suggested that plagioclase and K-feldspar disappeared by chemical weathering after deposition, resulting in the quartz and clay-rich sediments. Plagioclase and chlorite altered to kaolin and vermiculite, respectively. Goethite and hematite derived by the weathering of iron-bearing minerals stained the sediment to reddish brown color. The mineralogical and geochemical properties of the reddish brown clay-silt sediments were consistent with those of eolian deposits identified in Korea, supporting eolian origin of the Jangdongri sediments, requiring future confirmation including age dating and isotopic analysis.