Browse > Article

Isotopic Differences among Zooplankton Taxa and Seasonal Variation of Zooplankton Community Coexisting with Microcystis  

Lee, Jae-Yong (Department of Environmental Science, Kangwon National University)
Kim, Jai-Iu (Department of Environmental Science, Kangwon National University)
Jung, Yu-Kyong (Department of Environmental Science, Kangwon National University)
Kim, Bom-Chul (Department of Environmental Science, Kangwon National University)
Publication Information
Abstract
We used stable isotope analysis to investigate the hypothesis that zooplankton were not able to utilize Microcystis as a food source. We also studied seasonal variation of the zooplankton community in a eutrophic Wangsong reservoir. The dominant copepod species changed from Cyclops vicinus to Thermocyclops taihokuensis. Density of zooplankton was suppressed by high density of Microcystis in June and the density of phytoplankton and chlorophyll a concentration was lowest in July. The difference in $\delta^{13}C$ and $\delta^{15}N$ between cladocerans (Daphnia galeata and Bosmina longirostris) and copepods showed the maximum difference of $12^{\circ}/_{\circ\circ}$ and $4^{\circ}/_{\circ\circ}$, respectively, indicating different energy sources and trophic positions between two taxonomic groups. The difference in $\delta^{13}C$ between Microcystis and zooplankton ranged from $3{\sim}7^{\circ}/_{\circ\circ}$, supporting the hypothesis that Microcystis could not be used as food source of zooplankton.
Keywords
stable isotope; eutrophic reservoir; Microcystis; cladocerans; copepods;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Burns, C.W. and M. Schallenberg. 2001. Calanoid copepods versus cladocerans: Consumer effects on protozoa in lakes of different trophic status. Limnol. Oceanogr. 46: 1558-1565.   DOI   ScienceOn
2 Devetter, M. and J. Seda. 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Rimov reservoir in spring. Internat. Rev. Hydrobiol. 91: 101-112.   DOI   ScienceOn
3 Kirk, K. 2002. Competition in variable environments: experiments with planktonic rotifers. Freshwater Biology 47: 1089-1096.   DOI   ScienceOn
4 Park, H.D., C. Iwami, M.F. Watanabe, K.I. Harada, T. Okino and H. Hayashi. 1998. Temporal variabilities of the concentrations intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Env. Tox. Wat. Qual. 13: 61-72.   DOI   ScienceOn
5 Zohary, T., J. Erez, M. Gophen, I. Berman-Frank and M. Stiller. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography 39: 1030-1043.   DOI   ScienceOn
6 Hanazato, T. and M. Yasuno. 1987. Evaluation of Microcystis as food for zooplankton in a eutrophic lake. Hydrobiologia 144: 251-259.   DOI
7 Yoshioka, T., E. Wada and H. Hayashi. 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75(3): 835-864.   DOI   ScienceOn
8 경기도보건환경연구원. 2004. 2004년 경기도 6개 호소 생물상조사. p. 16.
9 Vuorio, K., M. Meili and J. Sarvala. 2006. Taxon-specific variation in the stable isotopic signatures ($\delta^{13}C$ and $\delta^{15}N$) of lake phytoplankton. Limnology and Oceanography 46: 2061-2066.
10 Yang, Z., F. Kong, X. Shi and H. Cao. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225-230.   DOI   ScienceOn
11 Schindler, D.E., S.R. Carpenter, J.J. Cole, J.F. Kitchell and M.L. Pace. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248-251.   DOI   ScienceOn
12 Gu, B. and V. Alexander. 1996. Stable carbon isotope evidence for atmospheric ${CO_2}$ uptake by cyanobacterial surface scums in a eutrophic lake. Applied and Environmental Microbiology 62(5): 1803-1804.
13 Vander Zanden, M.J. and J.B. Rasmussen. 2001. Variation in $\delta^{15}N$ and $\delta^{13}C$ trophic fractionation: Implications for aquatic food web. Freshwater Biology 51: 807-822.
14 Gu, B. and V. Alexander. 1993. Estimation of ${N_2}$ fixation based on differences in the natural abundance of 15N among freshwater ${N_2}$-fixing and non-${N_2}$-fixing algae. Oecologia 96: 43-48.   DOI   ScienceOn
15 Starkweather, P.L. and P.E. KelIar. 1983. Utilization of cyano-bacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia 104: 373-178.   DOI
16 Syvaranta, J., H. Hamalainen and R.I. Jones. 2006. Withinlake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology 51: 1090-1102.   DOI   ScienceOn
17 Pulido-Villena, E., I. Reche and R. Morales-Baquero. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Canadian Journal of Fisheries and Aquatic Sciences 62: 2640-2648.   DOI   ScienceOn
18 Quiblier, C., G. Bourdier, C. Amblard and D. Pepin. 1994. Separation of phytoplanktonic pigments by HPLC for the study of phyto-zooplankton trophic relationships. Aquatic Sciences 56(1): 1015-1621.
19 Grey, J., R.I. Jones and D. Sleep. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr. 46: 505-513.   DOI   ScienceOn
20 Gu, B. and C.L. Schelske. 1996. Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtrophical lake. Journal of Plankton Research 18: 2081-2092.   DOI   ScienceOn
21 Park, S.K. and J.H. Kim. 1995. Cross correlation analysis of environmental factors affecting water-bloom of Microcystis aeruginosa (Cyanophyta). Korean Journal of Limnology 28(4): 381-391.
22 Penaloza, R., M. Rojas, I. Vila and F. Zambrano. 1990. Toxicity of a soluble peptide from Microcystis sp. to zooplankton and fish. Freshwater Biology 24: 233-240.   DOI
23 Panosso, R., P. Carlsson, B. Kozlowsky-Suzuki, S.M.F.O. Azevdo and E. Graneli. 2003. Effect of grazing by a neotrophical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169-1175.   DOI   ScienceOn
24 Grey, J., R.I. Jones and D. Sleep. 2000. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232-240.   DOI   ScienceOn
25 Ferrao-Filho, A.S. and S.M.F.O. Azevedo. 2003. Effect of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquatic Ecology 37: 23-35.   DOI   ScienceOn
26 Fulton, R.S. and H.W. Paerl. 1987. Effect of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634-644.   DOI   ScienceOn
27 Orcutt, J.D. and M.L. Pace. 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques. Hydrobiology 119: 73-80.   DOI
28 Geller, W. and H. Muller. 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316-321.   DOI
29 DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica 42: 495-506.   DOI   ScienceOn
30 DeNiro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Cosmochimica 45: 341-351.   DOI   ScienceOn
31 McClelland, J.W. and J.P. Montoya. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83: 2173-2180.   DOI   ScienceOn
32 최성현, 임병진. 2003. 배양조건에 다른 물벼룩의 개체생산 특성. 한국육수학회지 36(2): 208-214.   과학기술학회마을
33 Carmichael, W.W. 1992. Cyanobacteria secondary metabolites - the cyanotoxins. Journal of Applied Bacteriology 72: 445-459.   DOI
34 Chen, F. and P. Xie. 2003. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese Lake. Journal of Freshwater. 18(1): 97-104.   DOI   ScienceOn
35 Minagawa, M., A.W. David and R.K. Isaac. 1984. Comparison of Kjeldahl and Combusition Methods for Measurement of Nitrogen Isotope Ratios in Organic Matter. Anal. Chem. 56: 1859-1861.   DOI   ScienceOn
36 Coffin, R.B., B. Fry and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnol. Oceanogr. 34: 1305-1310.   DOI   ScienceOn
37 Brandl, Z. 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475-489.   DOI   ScienceOn
38 Lorrain, A., N. Savoye, L. Chauvaud, Y.M. Paulet and N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N content and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta 491: 125-133.   DOI   ScienceOn
39 Lee, J.Y., T. Yoshioka and T. Hanazato. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakoma- ike, Japan). Limnology 3: 151-158.   DOI   ScienceOn
40 Burn, C.W. and A. Dodds. 1999. Food limitation, predation and allelopathy in a population of Daphnia carinata. Hydrobiologia 400: 41-53.   DOI   ScienceOn
41 하 경, 장민호, 정종문, 주기재. 2003. 동물플랑크톤 배양여과액에 의한 Microcystis aeruginosa의 성장, 형태 및 microcystin 생성량의 변화. 한국육수학회지 36(1): 1-8.   과학기술학회마을
42 Kobari, T. and S. Ban. 1998. Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. Journal of Plankton 20(6): 1073-1086.   DOI   ScienceOn
43 Liu, H., P. Xie, F. Chen, H. Tang and L. Xie. 2002. Enhancement of planktonic rotifers by Microcystis aeruginosa blooms: an enclosure experiment in a shallow eutrophic lake. Journal of Freshwater Ecology 17: 239-247.   DOI   ScienceOn
44 APHA(American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington DC.
45 이재용, 김범철, 吉岡崇仁, 日野修次. 2008. 두 삼림호수에 공존하는 동물플랑크톤종의 다른 안정동위원소비. 한국하천호수학회지 41(3): 294-300.   과학기술학회마을
46 Korponai, J., K. Matyas, G. Paulovits, I. Tatral and N. Kovacs. 1997. The effect of different fish communities on the cladoceran plankton assemblages of the KisBalaton Rerservoir, Hungary. Hydrobiologia 360: 211-221.   DOI   ScienceOn
47 이지민, 이정준, 박종근, 이정호, 장천영, 윤성명. 2005. 대청호 남조류 대발생기의 동물플랑크돈상 및 Microcystis aeruginosa와 물벼룩류 개체군 변동의 상관관계. 한국육수학회지 38(2): 146-159.   과학기술학회마을
48 임병진, 김범철, 유광일, 유재근. 1997. 낙동강에서 남조류 대발생시 동물플랑크톤의 군집 변화. 한국육수학회지 30(4): 337-346.
49 박재충, 박정원, 김종달, 신재기. 2005. 안동호에서 환경요인과 식물플랑크톤의 시.공간적인 변동. 한국조류학회지 20(4): 333-343.
50 심두섭, 안태석. 1992. 소양호에서 동물플랑크톤의 섭식작용에 관한 연구. 한국미생물학회지 30: 129-133.
51 김명운, 김민호, 조장천, 김상종. 1995. Cyanobacteria의 증식에 따른 대청호 생태계내의 생물군집 변화. 한국육수학회지 28(1): 1-9.
52 Kling, G.W., B. Fry and W.J. O'brien. 1992. Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73(2): 561-566   DOI   ScienceOn
53 Heo, W.M. and B. Kim. 1997. The change in N/P ratio with eutrophication and cyanobacterial blooms in Lake Soyang, Korea. Verh. Internat. Verein. Limnol. 26: 491-495.
54 김호섭, 김범철, 최은미, 황순진. 2000. 부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향. 한국육수학회지 33(4): 366-373.
55 김호섭,박제철, 황순진. 2003. 수심이 얕은 부영양 인공호(일감호)의 동.식물플랑크톤 동태학. 한국육수학회지 36(3): 286-294.   과학기술학회마을
56 Hessen, D.O., T, Andersen and A. Lyche. 1990. Carbon metabolism in a humic lake: Pool sizes and cycling though zooplankton. Limnol. Oceanogr. 35(1): 84-99.   DOI   ScienceOn