• 제목/요약/키워드: Isotope effect

검색결과 243건 처리시간 0.025초

Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2707-2710
    • /
    • 2012
  • The nucleophilic substitution reactions of O-ethyl phenyl phosphonochloridothioate with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from a secondary inverse DKIE ($k_H/k_D$ = 0.93) to a primary normal DKIE ($k_H/k_D$ = 1.28) as the substituent of nucleophile (X) changes from electron-donating to electron-withdrawing. These can be rationalized by the gradual transition state (TS) variation from a backside to frontside attack. A concerted $S_N2$ mechanism is proposed. A trigonal bipyramidal TS is proposed for a backside attack while a hydrogen-bonded, four-center-type TS is proposed for a frontside attack.

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.843-847
    • /
    • 2012
  • The nucleophilic substitution reactions of dibutyl chlorothiophosphate (4S) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs;$k_H/k_D$) are primary normal ($k_H/k_D$ = 1.10-1.35). A concerted mechanism involving predominant frontside nucleophilic attack is proposed on the basis of the primary normal DKIEs and selectivity parameters. Hydrogen bonded, four-center-type transition state is proposed. The steric effects of the two ligands on the anilinolysis rates of the chlorothiophosphates are discussed. The anilinolyses of P=S systems are compared with those of their P=O counterparts on the basis of the reactivities, thio effects, selectivity parameters, and DKIEs.

Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2797-2802
    • /
    • 2014
  • Nucleophilic substitution reactions of Y-aryl methyl (8) and Y-aryl propyl (10) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed for 8 based on the negative ${\rho}_{XY}$ (= -0.23) value, while a stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed for 10 based on the positive ${\rho}_{XY}$ (= +0.68) value. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are 0.89-1.28 and 0.62-1.20 with 8 and 10, respectively. Primary normal and secondary inverse DKIEs are rationalized by a frontside attack involving hydrogen bonded, four-center-type transition state and backside attack involving in-line-type transition state, respectively.

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Barai, Hasi Rani;Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1829-1834
    • /
    • 2013
  • The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.

레이저와 프라즈마와의 비선형상오작용에 관한 연구 -분광법에 의한 제 2고주파와 Brillouin 산람광의 검출- (Study on the Nonlinear Interaction of Laser with Plasma -Detection of Second Harmonic Light and Brillouin Scattering Light by Means of Spectroscopic Technique-)

  • Kang, Hyung-Boo
    • 대한전기학회논문지
    • /
    • 제33권5호
    • /
    • pp.173-180
    • /
    • 1984
  • The spectra of scattering light fromlaser-produced plasma near its fundamental and second harmonic wavelength were observed respectively by means of spectroscopic technique. The experimental results and the generation mechanism of nonlinear effects such as the second garmonics and the brillouin scattering were analysed theoretically. The spectra of reflected laser light became wider than that of incident laser light. And the peak of spectrum of reflected light shifted to red-side from that of incident light. The second harmonic light is generated from the nonlinear interaction of the incident laser light and the electron plasma wave excited in resonance region by the oblique incidence of laser light to the plasma. The Brillouin backscattering from laser-produced plasmas of hydrogen and deuterium has shown an isotope effect in the red-side region of the generated second harmonic light. This isotope shift is explained by the parametric instability at the cutoff (resonance) region using frequency-and phase-matching conditions of the waves.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3245-3250
    • /
    • 2011
  • The nucleophilic substitution reactions of diisopropyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The anilinolysis rate of 3 is rather slow to be rationalized by the conventional stereoelectronic effects. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D$ = 0.71-0.95) with maximum magnitude at X = H.A concerted mechanism involving predominant backside nucleophilic attack is proposed on the basis of the secondary inverse DKIEs.

수소 동위체의 분리농축을 위한 수소저장합금의 수소 동위체 효과 (Hydrogen Isotope Effects in Hydrogen Storage Alloy for Separation and Concentration of Hydrogen Isotopes)

  • 조성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.327-334
    • /
    • 2003
  • 경수소와 중수소를 사용하여 Ti1.0Mn0.9V1.1합금의 경우 313K와 353 K에서, $Ti_{1.0}Cr1.5V_{1.1}$합금의 경우 313 K와 338K에서 각각 수소 동위체 효과를 조사하였다. 합금의 결정구조, 각 상의 존재량, 격자상수 등은 Rietveld method에 의해 결정되었다. 두 합금 모두 용도에 관계 없이 중수소의 흡장량이 경수소에 비하여 많았고, 이들 합금의 수소 동위체 효과는 LaNis 합금에 비하여 대단히 크게 나타났다. 실험 온도 범위에서 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금의 경수소화물은 중수소화물에 비하여 안정하였고, Ti1.0Cr1.5V1.7합금에 있어서는 중수소화물이 더욱 안정하였다. 또한 $Ti_{1.0}Cr_{1.5}V_{1.7}$합금이 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금보다 많은 량의 경수소와 중수소를 흡장하였다.

Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2306-2310
    • /
    • 2011
  • The nucleophilic substitution reactions of diethyl thiophosphinic chloride with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 55.0 $^{\circ}C$. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) invariably increase from secondary inverse ($k_H/k_D$ < 1) to primary normal (kH/kD > 1) as the nucleophiles change from the strongly basic to weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the gradual transition state (TS) variation from a predominant backside attack, via invariably increasing the fraction of a frontside attack, to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. A frontside attack involving a hydrogen bonded, four-center-type TS is substantiated by the primary normal DKIEs.

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile

  • Barai, Hasi Rani;Hoque, Md. Ehtesham Ul;Lee, Mijin;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1096-1100
    • /
    • 2013
  • The kinetic studies on the reactions of O-methyl (1), O-propyl (3) and O-isopropyl (4) phenyl phosphonochloridothioates with substituted anilines and deuterated anilines have been carried out in acetonitrile at $55.0^{\circ}C$. A concerted $S_N2$ mechanism is proposed for the anilinolyses of 1, 3 and 4. The anilinolysis rates of the phosphonochloridothioates are predominantly dependent upon the steric effects over the inductive effects of the two ligands. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal with 1 and 3, while secondary inverse with 4. Primary normal and secondary inverse DKIEs are rationalized by frontside and backside nucleophilic attack transition state, respectively. The DKIEs of the phosphonochloridothioates do not have any consistent correlations with the two ligands.