DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile

  • Received : 2013.01.04
  • Accepted : 2013.01.14
  • Published : 2013.04.20

Abstract

The kinetic studies on the reactions of O-methyl (1), O-propyl (3) and O-isopropyl (4) phenyl phosphonochloridothioates with substituted anilines and deuterated anilines have been carried out in acetonitrile at $55.0^{\circ}C$. A concerted $S_N2$ mechanism is proposed for the anilinolyses of 1, 3 and 4. The anilinolysis rates of the phosphonochloridothioates are predominantly dependent upon the steric effects over the inductive effects of the two ligands. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal with 1 and 3, while secondary inverse with 4. Primary normal and secondary inverse DKIEs are rationalized by frontside and backside nucleophilic attack transition state, respectively. The DKIEs of the phosphonochloridothioates do not have any consistent correlations with the two ligands.

Keywords

References

  1. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33,2707. https://doi.org/10.5012/bkcs.2012.33.8.2707
  2. Adhikary, K. K.; Lumbiny, B. J.; Dey, S.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2628. https://doi.org/10.5012/bkcs.2011.32.8.2628
  3. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29,2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  4. Taft, R. W. Steric Effect in Organic Chemistry, Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
  5. Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
  6. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  7. Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p735.
  8. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  9. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  10. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  11. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  12. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  13. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  14. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  15. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  16. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3245. https://doi.org/10.5012/bkcs.2011.32.9.3245
  17. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4403. https://doi.org/10.5012/bkcs.2011.32.12.4403
  18. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 663. https://doi.org/10.5012/bkcs.2012.33.2.663
  19. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1879. https://doi.org/10.5012/bkcs.2012.33.6.1879
  20. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  21. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 843. https://doi.org/10.5012/bkcs.2012.33.3.843
  22. Hoque, E. M. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  23. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477. https://doi.org/10.1021/ja964217y
  24. Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  25. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. https://doi.org/10.1021/ja035167h
  26. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61. https://doi.org/10.2174/1385272053369349
  27. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  28. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  29. Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
  30. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217. https://doi.org/10.1016/S0065-3160(06)41004-2
  31. Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
  32. Gronert, S.; Fagin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
  33. Yamata, H.; Ando, T.; Nagase, S.; Hanamura, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  34. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  35. Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037

Cited by

  1. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  2. Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1016
  3. -butyl phenyl phosphonochloridothioate in acetonitrile: Synthesis, characterization, kinetic study, and reaction mechanism vol.30, pp.10, 2017, https://doi.org/10.1002/poc.3679
  4. Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1329