Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2707

Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile  

Hoque, Md. Ehtesham Ul (Department of Chemistry, Inha University)
Lee, Hai-Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The nucleophilic substitution reactions of O-ethyl phenyl phosphonochloridothioate with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from a secondary inverse DKIE ($k_H/k_D$ = 0.93) to a primary normal DKIE ($k_H/k_D$ = 1.28) as the substituent of nucleophile (X) changes from electron-donating to electron-withdrawing. These can be rationalized by the gradual transition state (TS) variation from a backside to frontside attack. A concerted $S_N2$ mechanism is proposed. A trigonal bipyramidal TS is proposed for a backside attack while a hydrogen-bonded, four-center-type TS is proposed for a frontside attack.
Keywords
Phosphoryl transfer reaction; Anilinolysis; O-Ethyl phenyl phosphonochloridothioate; Deuterium kinetic isotope effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI
2 Shim, J. Y.; Kim, Y. A.; Lee, E. H.; Lee, Y. T.; Lee, H.-S. J. Agric. Food Chem. 2008, 56, 11551.   DOI
3 Adhikary, K. K.; Lumbiny, B. J.; Dey, S.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2628.   DOI
4 Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065.   DOI
5 Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
6 Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
7 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
8 Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
9 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780.   DOI
10 Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431.   DOI
11 Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008.   DOI
12 Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919.   DOI
13 Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
14 Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641.   DOI
15 Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.   DOI
16 Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
17 Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
18 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
19 Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631.   DOI
20 Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526.   DOI
21 Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826.   DOI
22 Melander, L., Jr.; Saunders, W. H. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980.
23 Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.