• Title/Summary/Keyword: Isonicotinate

Search Result 14, Processing Time 0.029 seconds

Preparation and Characterization of Nickel(Ⅱ) and Copper(Ⅱ) Tetaaza Macrocyclic Complexes with Isonicotinate Ligands

  • Choi, Ki-Young;Kim, Moon-Jip;Kim, Dae-Sue;Kim, Yong-Son;Kim, Jae-Hyun;Ryu, Hai-Il;Lim, Youn-Mook;Kang, Seung-Gu;Shin, Ueon-Sang;Lee, Kyu-Chul;Hong, Choon-Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1062-1066
    • /
    • 2002
  • The complexes [Ni(L)(INT)2]${\cdot}$5H2O (1) and [Cu(L)(H2O)](Cl)(INT)${\cdot}$3H2O (2) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18 ,07.12 ]docosane, INT = isonicotinate) have been prepared and characterized by X-ray crystallography, electronic absorption, and cyclic voltammetry. The crystal structure of 1 reveals an axially elongated octahedral geometry with two axial isonicotinate ligands. The electronic spectra, magnetic moment, and redox potentials of 1 also show a high-spin octahedral geometry. However, 2 shows that the coordination environment around the copper atom is a distorted square-pyramid with an axial water molecule. The spectra and electrochemical behaviors of 2 are also discussed.

Kinetic Study on Aminolysis of 4-Nitrophenyl Isonicotinate in Acetonitrile: Effect of Amine Basicity on Reactivity and Reaction Mechanism

  • Shin, Minah;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2130-2134
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl isonicotinate (7) with a series of cyclic secondary amines in MeCN. The plots of $k_{obsd}$ vs. [amine] curve upward for the reactions with weakly basic amines (e.g., morpholine, 1-(2-hydroxyethyl)piperazine, and piperazine) but are linear for those with strongly basic amines (e.g., piperidine and 3-methylpiperidine). The curved plots for the reactions with the weakly basic amines are typical for reactions reported previously to proceed through uncatalyzed and catalyzed routes with two intermediates (e.g., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). In contrast, the linear plots for the reactions with the strongly basic amines indicate that the catalytic route (i.e., the deprotonation process to yield $T^-$ from $T^{\pm}$ by a second amine molecule) is absent. The Br${\o}$nsted-type plots for $Kk_2$ and $Kk_3$ (i.e., the rate constants for the uncatalyzed and catalyzed routes, respectively) exhibit excellent linear correlations with ${\beta}_{nuc}$ = 0.99 and 0.69, respectively. The effect of amine basicity on the reaction mechanism is discussed in detail.

Crystal Structure of Two-Dimensional Bis(isonicotinato)tet-raaquazinc(II) Complex Linked by Hydrogen-Bonds (수소 결합에 의한 이차원의 Bis(isonicotinato)tetraaquazinc(II) 착물의 결정구조)

  • Park, Ki-Young;Kim, Moon-Jip;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.17-20
    • /
    • 2002
  • The complex [Zn(L)₂(H₂O)₄] (1) (L = isonicotinate) has been prepared and characterized by X-ray crystallography. Compound 1 crystallizes in the triclinic space group P1, with a = 6.9062(4) , b = 9.2618(7) , c = 6.3313(3) , α = 104.986(6)°, β = 112.865(4)°, γ = 96.213(6)°, V = 350.41(4) , Z = 1, R₁(wR₂) for 1225 observed reflections of [I > 2σ(I)] was 0.0209 (0.0591). The coordination environment of the zinc atom can be described as an octahedron in which the isonicotinato ligands are mutually trans. Compound 1 is also connected into a two-dimensional chain via hydrogen-bonds.

High Efficient Mass-trapping Technique using a Mixture of Methyl Isonicotinate and Aggregation Pheromone to Control the Thrips Infesting Hot Peppers in Open Field Conditions (노지 고추재배지에 발생하는 총채벌레를 대상으로 methyl isonicotinate와 집합페로몬 혼합물을 이용한 고효율 대량유살 기술)

  • Yonggyun Kim;Gahyun Jin;Hyunje Park;Chulyoung Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.245-253
    • /
    • 2023
  • A control technique using mass-trapping was developed against thrips infesting hot peppers cultivating in greenhouses. It was essential to develop effective lure(s) attracting thrips for the control technique. Especially, mass-trapping using aggregation pheromone (AP) of the thrips was not much effective in open field cultivating hot peppers. This study aimed to develop a new lure to enhance the attractiveness of AP-based mass-trapping. In addition, this study was designed to investigate the decrease of attractiveness of the AP-based mass-trapping in the open field conditions. Methyl isonicotinate (MIN) as a new lure was assessed by the laboratory olfactometry and showed its attractiveness to thrips and its mixture effect with AP to attract the thrips. These results led us to test the AP+MIN mixture in the open field conditions cultivating hot peppers. The mixture significantly enhanced the mass-trapping efficacy in the open field conditions. Especially, the significant increase of the captured numbers was found in the western flower thrips, Frankliniella occidentalis. Furthermore, the increase of the AP concentration in the mass-trapping significantly increased the captured numbers in F. occidentalis and other thrips occurring in the hot pepper field. This study demonstrated the difference in the AP-based mass-trapping efficacy of the thrips between greenhouse and open field conditions. It also showed the increase of mass-trapping efficacy by increasing AP concentration in the trap. Especially, this study proposes a high efficient mass-trapping technology by the addition of MIN to AP especially against F. occidentalis.

Kinetic Study on Aminolysis of 4-Nitrophenyl Nicotinate and Isonicotinate: Factors Influencing Reactivity and Reaction Mechanism

  • Kim, Min-Young;Shin, Minah;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2443-2447
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate (7) and 4-nitrophenyl isonicotinate (8) with a series of cyclic secondary amines in $H_2O$ containing 20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plots for the reactions of 7 and 8 are linear with ${\beta}_{nuc}=0.90$ and 0.92, respectively, indicating that the reactions proceed through a stepwise mechanism with expulsion of the leaving group occurring in the rate-determining step. Comparison of the reactivity of 7 and 8 with that of 4-nitrophenyl benzoate (2a) and 4-nitrophenyl picolinate (6) has revealed that their reactivity toward the amines increases in the order 2a < 7 < 8 < 6, although the reactions of these substrates proceed through the same mechanism. Factors that control reactivity and reaction mechanism have been discussed in detail (e.g., inductive and field effects, H-bonding interaction, solvent effect, etc.).

Limitation in Attraction Efficacy of Aggregation Pheromone or Plant Volatile Lures to Attract the Western Flower Thrips, Frankliniella occidentalis Infesting the Hot Pepper, Capsicum annuum, in Greenhouses (시설 고추재배지에서 꽃노랑총채벌레 집합페로몬과 식물 휘발성 유인제 효능의 한계성)

  • Kim, Chulyoung;Gwon, Gimyeon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.369-377
    • /
    • 2021
  • Mass trapping of the western flower thrips, Frankliniella occidentalis, has been considered as an option to control this pest. This study applied the commercial lures to the hot pepper-cultivating greenhouses and assessed the enhancement of the attracting efficiency by adding to sticky traps. There was no color difference in the attracting efficiency between blue and yellow sticky traps. However, the installation position of the traps was crucial in the greenhouses. The more thrips were captured within host cropping area than outside areas of the crop. In vertical trap position, it was the most optimal to install the traps at the crop crown. Using these installation parameters, the yellow sticky traps captured approximately 1% population of the thrips. To enhance the trapping efficiency, the commercial lures containing aggregation pheromone or 4-methoxybenzaldehyde were added to the yellow sticky traps. However, these commercial lures did not significantly enhance the trapping efficiency compared to the yellow sticky trap alone. In contrast, Y-tube olfactometry assays confirmed the high efficiency of the aggregation pheromone or another plant volatile (methyl isonicotinate) to attract the thrips. Interestingly, these lure components had lower attracting efficiencies compared to the hot pepper flowers. The high attractive efficiency of the flowers was supported by the observation that the commercial lure was effective to enhance the trapping efficiency of the yellow sticky trap against F. occidentalis in Welsh onion (Allium fistulosum) field without any flowers. This study indicates the limitation of the commercial lures in application to hot pepper fields for the mass trapping of F. occidentalis. It also suggests active volatile component(s) from hot pepper flowers to attract F. occidentalis.

Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Choi, Seo-Young;Hong, Yeon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1951-1956
    • /
    • 2011
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate 5 and isonicotinate 6 with alkali metal ethoxide EtOM (M = K, Na, and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. Plots of pseudo-first-order rate constant $k_{obsd}$ vs. EtOM concentration exhibit upward curvature for the reactions of 5 and 6 with EtOK and EtONa but are almost linear for those with EtOLi. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has shown that $k_{EtOK}$ ${\geq}$ $k_{EtONa}$ > $k_{EtO^-}$ but $k_{EtOLi}$ < $k_{EtO^-}$. It has been concluded that $K^+$ and $Na^+$ ions catalyze the reactions by increasing the electrophilicity of the carbonyl carbon atom through formation of a 4-membered cyclic transition state $TS_3$ or $TS_4$. However, $M^+$ ion catalysis has been found to be much less significant for the reactions of 5 and 6 than for the corresponding reactions of 4-nitrophenyl picolinate 4, which was reported to proceed through a 5-membered cyclic transition state $TS_2$. Although 5 and 6 are significantly more reactive than 4-nitrophenyl benzoate 3, the reactions of 5 and 6 result in smaller $k_{EtOK}/k_{EtO^-}$ ratios than those of 3. The electron-withdrawing ability of the nitrogen atom in the acyl moiety of 5 and 6 has been suggested to be responsible for the increase in reactivity and the decrease in the $k_{EtOK}/k_{EtO^-}$ ratio.