Synthesis and Crystal Structures of $\mathbf{Z n}$ (II)- and $\mathbf{C d}$ (II) - Isonicotinate Complexes

Bon Kweon Koo
Department of Life Chemistry: Catholic Unwersity of Daegu. Gyeongbuk 38430. Korea.
E-mail: bkkoo@cuackr
(Received December 31, 2015; Accepted January 26, 2016)

Key words: Crystal structures, $\mathrm{Mn}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$, Isonicotinate

INTRODUCTION

Recently much attention has been paid to design and synthesis of metal-organic hybrid materials with fascinating network topologies ${ }^{1}$ and potential applications as functional materials. ${ }^{2}$

Isonicotinic acid (HIN) have been widely used in synthesizing metal organic frameworks as asymmetrical rigid ligand. With regard to isonicotinic acid complex, hydrogen bonds $(\mathrm{O}-\mathrm{H} \ldots \mathrm{O})$ can be commonly found between uncoordinated carboxylic group and water in the complex and at the same time, $\pi-\pi$ stackings also exist in the coordination. As a consequence, a lot of isonicotinic acid complexes can form infinite extended three-dimensional network supramolecular compounds. ${ }^{3}$ In the view of development of synthetic strategies and functional materials, the combination of carboxylate-containing ligands and neutral pyridylcontaining ligands can afford much more assembly process with metal ions through changing one of two types of organic ligands. ${ }^{4}$

During studies aimed at constructing cavity containing rectangular two- or three-dimensional networks using dicarboxylate and 4-pyridylcarbonitrile as spacer, we have isolated 3D-coordination polymers, $\left[\mathrm{Zn}\left([\mathrm{N})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](1)\right.$ and $\left[\mathrm{Cd}(\mathrm{IN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (2), respectively, using diphenic acid and 4-pyridylcarbonitrile as spacer. It is interesting that 4-pyridylcarbonitrile turned to isonicotinic acid by the acid hydrolysis in the process of reaction. . We report here the synthesis and crystal structures of the complex 1 and 2.

EXPERIMENTAL

All chemicals are commercially available and were used as received without further purification. Elemental analyses (C, H, N) were performed on a Carlo Erba EA-1106 Elemental Analyzer. Infrared spectra were recorded in the range
from 4000 to $400 \mathrm{~cm}^{-1}$ on a Mattson Polaris FT-IR Spectrophotometer using KBr pellets. Thermogravimetric analysis (TG) was performed on a TA Discovery TGA instrument with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. All reactions were carried out in 23 ml Teflon-lined stainless-steel autoclave. The vessels were filled approximately to 40% capacity. The initial and final pH of the reaction was measured using Sentron 1001 pH meter.

Preparation of $\left[\mathrm{Zn}(\mathrm{IN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (1)

A mixture of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.111 \mathrm{~g}, 0.5 \mathrm{mmol})$, diphenic acid $(0.121 \mathrm{~g}, 0.5 \mathrm{mmol})$, 4-pyridinecarbonitrile $(0.052 \mathrm{~g}, 0.5 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ in the mole ratio of 1.0:1.0:1.0:1111 was placed in a 23 mL Teflon-lined Parr acid digestion bomb and heated for 3 d at $180^{\circ} \mathrm{C}$ under autogenous pressure. After the mixture was removed from the oven and allowed to cool under ambient conditions for $3 \mathrm{~d} .$, colorless needles of 1 suitable for X-ray diffraction were isolated in $57 \%(0.110 \mathrm{~g})$ yield based on zinc. Initial $\mathrm{pH}, 4.0$; final $\mathrm{pH}, 4.0$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Zn}: \mathrm{C}$, 37.77 ; H, 4.22; N, 7.34. Found: C, $38.35 ; \mathrm{H}, 4.25 ; \mathrm{N}, 7.22 \%$. IR (KBr pellet, cm^{-1}): $3283(\mathrm{~m}), 2972(\mathrm{~s}), 1614(\mathrm{~m}), 1579(\mathrm{~s})$, $1536(\mathrm{~s}), 1444(\mathrm{~m}), 1406(\mathrm{~s}), 1054(\mathrm{~m}), 1033(\mathrm{~m}), 755(\mathrm{~m}), 710(\mathrm{~m})$.

Preparation of $\left[\mathrm{Cd}(\mathrm{IN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (2)

A mixture of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.153 \mathrm{~g}, 0.5 \mathrm{mmol})$, diphenic acid ($0.121 \mathrm{~g}, 0.5 \mathrm{mmol}$), 4-pyridinecarbonitrile $(0.052 \mathrm{~g}, 0.5 \mathrm{mmol})$, and water (7 mL) was placed in a 23 ml Teflon-lined Parr acid digestion bomb and heated for 3 d at $165^{\circ} \mathrm{C}$ under autogenous pressure. After the mixture was removed from the oven and allowed to cool under ambient conditions for 3d, colorless crystals (block) of 2 suitable for X-ray diffraction were isolated in 40.0% (0.083 g) yield based on Cd. Initial $\mathrm{pH}, 5.0$; final $\mathrm{pH}, 5.0$. Anal. Caled. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Cd}: \mathrm{C}, 33.62 ; \mathrm{H}, 3.76 ; \mathrm{N}, 6.54$. Found: C, $34.23 ; \mathrm{H}, 3.58 ; \mathrm{N}, 6.42 \%$. IR (KBr pellet, cm^{-1}): $3309(\mathrm{~s})$,

2975(w), 1586(s), 1541(s), 1417(s), 1384(s), 1229(m), $1058(\mathrm{~m}), 1021(\mathrm{~m}), 820(\mathrm{w}), 770(\mathrm{~m}), 686(\mathrm{~s})$.

X-ray Structure Determination

Single crystals of 1 and 2 were obtained by the method described in the above procedures. Structural measurement for the complexes were performed on a Bruker SMART APEX CCD diffractometer using graphite monochromatized Mo-Ka radiation $(\lambda=0.71073 \AA)$ at the Korea Basic Science Institute. The structures were solved by direct method and refined on F^{2} by full-matrix least-squares procedures using the SHELXTL programs. ${ }^{6}$ All non-hydrogen atoms were refined using anisotropic thermal parameters. The hydrogen atoms were included in the structure factor calculation at idealized positions by using a riding model, but not refined. Images were created with the DIAMOND program. ${ }^{7}$ The crystallographic data for complex 1 and 2 is listed in Table 1.

RESULTS AND DISCUSSION

The compounds were isolated from the reaction mixture of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1) / \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2)$, diphenic acid, 4pyridylcarbonitrile, and $\mathrm{H}_{2} \mathrm{O}$ in the mole ratio of 1.0:1.0: 1.0:1111(1)/778(2) by the hydrothermal technique. The diphenic acid present in the initial reaction mixture was not found in the crystalline product and 4-pyridylcarbonitrile was changed to isonicotinic acid by the acid hydrolysis in the hydrothermal processes. However, the compound 1 was reported previously by the reaction of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ with isonicotinic acid. ${ }^{8}$
Our first aim in this work was to obtain the 2D or 3D network MOF complexes which metal centers are bridged by the dicarboxylate anion and N -donor system. Unfortunately, attempts to obtain such materials by varying stoichiometry, temperature, and other reaction parameters proved to be generally unsuccessful.

Complex 1 and 2 show essentially the same structure

Table 1. Crystal data and stucture refinement for complexes 1 and 2

Complex	1	2
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Zn}$	$\mathrm{C}_{12} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Cd}$
Formula weight	381.64	428.67
T (K)	223(2)	223(2)
$\lambda(\AA)$	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
$a(\mathrm{~A})$	$6.3286(4)$	$6.4300(3)$
$b(A)$	$6.8862(4)$	$6.9164(4)$
$c(A)$	$7.2749(6)$	$9.4100(5)$
α	96.098(2)	94.662(2)
$\beta\left(^{\circ}\right.$)	$105.005(2)$	$104.7583(19)$
γ	$112.995(2)$	$111.9290(19)$
$V\left(A^{3}\right)$	349.83(4)	368.07(3)
Z	1	1
$\mu\left(\mathrm{mmm}^{-1}\right)$	1.803	1.529
$F(000)$	196	214
$\theta\left({ }^{\circ}\right)$	2.34 to 28.40	2.28 to 28.38
Absorption correction	Multi-scan, $\mathrm{T}_{\text {min }}=0.7033, \mathrm{~T}_{\text {max }}=0.8995$	Multi-scan, $\mathrm{T}_{\text {trin }}=0.7811, \mathrm{~T}_{\text {max }}=0.9139$
Limitung indices	$-8 \leq \mathrm{h} \leq 8,-9 \leq \mathrm{k} \leq 9,-12 \leq 1 \leq 12$	$-8 \leq \mathrm{h} \leq 8,-9 \leq \mathrm{k} \leq 9,-12 \leq 1 \leq 12$
Reflections collected	14592	13957
Independent reflections	$17493[\mathrm{R}(\mathrm{int})=0.0504]$	$1836[\mathrm{R}(\mathrm{int})=0.0386]$
Observed reflections [$\mathrm{I} \geq 2 \sigma(\mathrm{I})$]	1608	1794
Goodness-of-fit on $\mathrm{F}^{\text {2 }}$	1.134	1.155
$R_{1}[I \geq 2 \sigma(\mathrm{I})]$	0.0245	0.0201
$w_{2}[I \geq 2 \sigma(\mathrm{I})]$	0.0542	0.0412
R_{l}	0.0308	0.0218
wR_{2}	0.0567	0.0421
Largest peak and hole (e \AA^{-3})	0.416 and -0.325	0.435 and -0.331

Figure 1. Coordination environment in 1 (Symmetry codes: A, $-\mathrm{x},-\mathrm{y},-2$).

(a)

(b)

(c)

(d)

Figure 2. (a) Coordination environment in 2. (b) 1 D chain in 2. (c) 2D layer in 2. (d) 3 D supramolecular framework formed by O-ll...O hydrogen bond in 2. Symmetry codes: (a) $\mathrm{A}_{\mathrm{o}}-\mathrm{x},-\mathrm{y},-\%$; (b)-(d) $A, x-1, y-1, z-1 ; B,-x+1,-y,-z+1 ; C, x-1, y, z-1 ; D, x$, $y, z-1$.
(Fig . 1 and 2). Selected bond lengths and angles for both complexes are listed in Table 2. Each metal(II) ion in both complexes is coordinated in a slightly distorted octahedral $\mathrm{N}_{2} \mathrm{O}_{4}$ environment by two isonicotinic N -atoms and four O atoms of four coordinated water molecules. Each metal(II) ion lies in the equatorial plane (O 2 wO IwOlwAO2wA mean deviation, $0.000(\mathrm{I}) \mathrm{A})$. The $\mathrm{M}(\mathrm{II})-\mathrm{O}(\mathrm{Zn}-(\mathrm{O} ; 2.096(1), 2.157(1)$ and $\mathrm{Cd}-\mathrm{O}: 2.288(1), 2.328(2) \mathrm{N})$ and $\mathrm{M}(\mathrm{II})-\mathrm{N}$ distances ($7 n-\mathrm{N} ; 2.135(1), \mathrm{Cd}-\mathrm{N} ; 2.311$ (1) λ) are similar to those of $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] 0.5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}^{9}$ and $\left[\mathrm{Cd}(\mathrm{IN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. D.MF, ${ }^{10}$ respectively. The bond angles around the metal(II) ion are as followings: frans-L-M-L $=180(8)$ and cis-L-M$\mathrm{L}=86.6 \mathrm{I}(5)-91.86(5)$ for $\mathrm{Zn}(\mathrm{II})$ and frans-L-M-L $=180(8)$ and cis-I $-\mathrm{M}-\mathrm{I},=86.16(5)-93.84(5)^{\circ}$ for $\mathrm{Cd}(\mathrm{II})($ Table 2$)$. Due to delocalization of electron density in the carboxylate anion the $\mathrm{C}-\mathrm{O}$) bond distances are the same within an experimental uncertainties (Table 2). The carboxyl groups in isonicotinic acid are deprotonated and the dihedral angle of pyridyl rings are $3.758(41)^{\circ}$ for 1 and $0.000(85)^{\circ}$ for 2 ,

Table 2. Sclected bond lengths ($\dot{\lambda}$) and angles (\%) for the ('omplexces 1 and 2

Complex 1			
7n1-O2w	$2.096(1)$	7nl-O2wA	$2.096(1)$
$\mathrm{Znl-N1}$	2.135 (1)	Znl-N1A	$2.135(1)$
7nl-O1w	2.157(1)	7.n1-O\|wA	$2.157(1)$
$\mathrm{C6-03}$	$1.256(2)$	$\mathrm{C} 6-\mathrm{O} 4$	1.255(2)
O2w-Zn1-O2wA	180.00(8)	O2w-Zn1-N1	$91.86(5)$
O2wA-7nl-N1	$88.14(5)$	O2w-7n1-N1A	88.14(5)
O2wA-Znl-N1A	$91.86(5)$	N1-Znl-N1A	180.00(5)
O2w-Znl-O1w	$86.78(5)$	N1-Znl-O1w	88.61 (5)
N1A-Zn(1)-O1w	91.39(5)	O2w-Znl-O1wA	93.22(5)
O2wA-Znl-O1wA	$86.78(5)$	N1-Zn1-O1wA	91.39(5)
N1A-Znl-O]wA	88.61(5)	O1w-Zn]-O1wA	180.00(7)
O4-66-03	125.87(15)	O4-C8-03	125.5(4)
Complex 2			
Cdl-O2w	$2.328(2)$	Cdl-O2wA	$2.328(2)$
Cdi-N1	2.311(1)	Cdi-N1A	$2.311(1)$
Cdlolw	$2.288(1)$	Cdl-OlwA	$2.288(1)$
$\mathrm{C} 6-\mathrm{O} 3$	$1.255(2)$	C6-04	$1.251(2)$
O2w-Cdl-(02wA	$180.00(8)$	(92w-Cdl-N1	93.84 (5)
O2wA-Cdl-N1	$86.16(5)$	O2w-CdI-N1A	$86.16(5)$
O2wA-Cd]-NIA	93.84(5)	Ni-Cdl-NIA	180.00)(8)
O2w-Cdl-O) ${ }_{\text {\% }}$	$93.42(6)$	No-Cdl-O1w	92.61(5)
NIA-CdI-OIw	$87.39(5)$	O2w-CdI-O1wA	86.58(6)
O2wA-Cd]-O1wA	$93.42(6)$	N1-Cdl-O1wA	87.39(5)
N1A-Cdl-O1wA	$92.61(5)$	O1w-Cd-()lwA	180.00(7)
Olw-CdI-O2wA	$86.58(6)$	O4-C6-03	125.84(16)

Symmetry iransfomations used to generate equivalent atoms: A)

[^0]Table 3. Hydrogen bonds for 2 [λ and ${ }^{\circ} 1$

D-H $\cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\angle \mathrm{DHA}$
Conplex 2				
O1w-H1w1 O3A	0.79	2.00	$2.778(2)$	168
O1w-H2w1 $\cdots 4 \mathrm{O}$	0.79	1.87	$2.652(2)$	173
$\mathrm{O} 2 \mathrm{w}-\mathrm{H} 1 \mathrm{w} 2 \cdots \mathrm{O} \mathrm{C}$	0.77	2.05	$2.808(2)$	169
$\mathrm{O} 2 \mathrm{w}-\mathrm{H} 2 \mathrm{w} 2 \cdots \mathrm{O} 4 \mathrm{D}$	0.79	1.98	$2.769(2)$	178

Symmetry transformations used to generate equivalent atoms: A . $\mathrm{x}-1, \mathrm{y}-1, z-1 ; \mathrm{B},-\mathrm{x} \mid \mathrm{I},-\mathrm{y},-\boldsymbol{- 1} 1 ; \mathrm{C}, \mathrm{x}-1, \mathrm{y}, \mathrm{z}-1 ; \mathrm{D}, \mathrm{x}, \mathrm{y}, \mathrm{z}-1$.
respectively.
The crystal packing is directed by hydrogen bond interactions with the participation of water II-donor atoms and carboxylic group O atoms acting as acceptors (Table 3). In a typical complex 2, the hydrogen bonds ($\mathrm{O} 2 \mathrm{w}-\mathrm{H}_{2}$...O4D) form ID chains along c-axis (Fig. 2(b)). The chains are interlinked by hydrogen bonds $(\mathrm{O} 1 \mathrm{w}-\mathrm{H} 2 \ldots \mathrm{O} 4 \mathrm{~B}, \mathrm{O} 2 \mathrm{w}-\mathrm{H} 1 \ldots \mathrm{O} \mathrm{C})$ to form 2D network along a-axis (Fig. 2(C)). In addition, hydrogen bond (Olw-H1 ...O3A) between the water molecule and carboxyl oxygen atom of another adjacent acplane contribute significantly to the assembly of these 2D networks into supramolecular 3D newwork (Fig. 2(d)).

The IR spectra show a typical the antisymmetic and symmetric stretching bands of carboxylate groups at 1579 and $1406 \mathrm{~cm}^{1}$ for 1 and at 1541 and $1384 \mathrm{~cm}^{1}$ for 2 , respectively. ${ }^{11}$ For the correlation of the infrared spectra with the structures of metal carboxylates the difference between the asymmetric and symmetric carboxylate stretches is often used. ${ }^{12}$ The separation (Δ) between $v_{\text {asym }}\left(\mathrm{CO}_{2}\right)$ and $v_{\text {sym }}$ $\left(\mathrm{CO}_{2}\right)$ is $173 \mathrm{~cm}^{1}$ for 1 and $157 \mathrm{~cm}^{1}$ for 2 , respectively. This value is similar to the observed values ($170 \pm 10 \mathrm{~cm}^{1}$) for the compounds with the ionic COO group. ${ }^{11}$ On the other hand, the Δ values calculated from the structural data of the complex are $165.29 \mathrm{~cm}{ }^{\prime}$ for 1 and $170.25 \mathrm{~cm}{ }^{\prime}$ for 2. respectively. $\left(\Delta=1818.1 \delta_{\mathrm{T}}\right.$ । $16.47\left(\theta_{\mathrm{OCO}}-120\right)$) 66.8 , where δ_{r} is difference between the two CO bond lengths (\AA) and $0_{0(0)}$ is the OCO angle $\left.\left\langle^{\circ}\right)\right)^{12}$

The $v(0)-\mathrm{H})$ stretch was observed at $-3300 \mathrm{~cm}{ }^{1}$ for both complex. The peaks at 1614-1536 cm ${ }^{1}$ are attributable to the $\mathrm{v}(\mathrm{C}-\mathrm{O}), v(\mathrm{C}-\mathrm{N})$ or $v(\mathrm{C}-\mathrm{C})$ of aromatic group. ${ }^{13}$ In addition, the peaks between 820 and $686 \mathrm{~cm}^{1}$ can be assigned to the v $(\mathrm{C}-\mathrm{H})$ of pyridine ring. ${ }^{14}$

TG analysis of compound 1 and 2 was performed to observe their thermal behaviors. As shown in Fig. 3, the IG curve of complex 1 shows the first weight loss of 16.00% (caled, 18.88%) from $50^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ in accord with the release of four water molecules based on the chemical formula. Upon subsequent heating, the compound remains intact to $365^{\circ} \mathrm{C}$, followed by a rapid loss of 45.56% (caled.

Figure 3. Thermogravimetric analysis of (a) 1 and (b) 2.
63.99%), corresponding to the loss of two IN molecules in the temperature range of $365-600^{\circ} \mathrm{C}$. The total weight loss of 61.63% is less than the calculated value of 78.76% if the final product is assumed to be ZnO , which indicate that the decomposing process is not complete due to the use of nitrogen protection. For 2, The first weight loss of 16.43% from 63 to $132^{\circ} \mathrm{C}$ comesponds to the release of four water molecules (calcd. 16.81%). The second weight loss of 56.52% (calcd. 56.97%) from 275 to $600^{\circ} \mathrm{C}$ corresponds to the release of two IN ligands. The final product is also assumed to be CdO (obsd. 26.4%, calcd. 29.95%).

In conclusion, two new polymeric complexes, $\left[\mathrm{M}(\mathrm{IN})_{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{\mathrm{n}}(\mathrm{M}=\mathrm{Zn}(\mathbf{1})$ and $\mathrm{Cd}(\mathbf{2})$) were successfully isolated by the hydrothermal technique, respectively. In the complex, monomeric metal (II) complex is interconnected by hydrogen bond between water H -donor atoms and carboxylic group O atoms to give 3D network. The isonicotinate ligand in the crystalline product was formed from 4-pyridylcarbonitrile as initial reactant by the acid hydrolysis in the process of reaction.

Acknowledgments. This rescarch was supported by the Research Grants of Catholic University of Daegu in 2015. The author also acknowledges the Korea Basic Science Institute for providing the crystal structure results.

Supporting Information. Crystallographic data for the structures reported here have been deposited with CCDC (Deposition No. CCDC-1443978 (1) and CCDC-1443979 (2)). These data can be obtained free of charge via http:// www.ecde. cam,ac.uk/conts/retrieving. htorl or from CCDC, 12 Union Road, Cambridge CB2 1F7., UK, E-mail: deposit (w) cedc. cam.ac.uk.

REFERENCES

1. (a) Dey, C.: Das, R: Poddar, P.: Banerjee, R. Cmst. Growth Des. 2012, I2, 12. (b) Lin, Z.-J.: Lu, J.: Hong, M.: Cao, R. Chem. Soc. Rev: 2014, 43, 5867. (c) Zhang, C.-D.: Liu, S.-X.: Gao, B.: Sum, C.-Y.: Xie, L.-H.: Yu, M.: Peng, J. Pohbedron 2007, 26, 1514.
2. (a) Aguado, S.: Quiros, J.: Canivet, J.: Farnusseng, D.: Boltes, K.: Rosal, R. Chemosphere 2014, M3, 188. (b) Hemmann, D.: Emerich, H.: Lepski, R.: Schaniel, D.: Ruschewitz, U. Inorg. Chem. 2013, 52, 2744. (c) Xiao, B.: Yuan, Q. Partictologv 2009, 7, 129. (d) Huxford, R. C.: Rocca, J. D.: Lin, W. Cum Opin. Chen. Biol. 2010, 14, 262. (e) Dimos, K: Stathi, P.: Karakassides, M. A.: Deligianakis, Y. Miooporous Mesoporous Mat. 2009, 126, 65.
3. Fan, Y.: Liu, R.: Du, W.: Lu, Q.: Pang, H.: Gao, F. J. Mater: Chem. 2012, 22, 12609.
4. (a) Zheng, Q.: Yang, F.: Deng, M.: Ling, Y:: Liu, X.: Chen, Z.: Wang, Y.: Weng, L.: Zhou, Y. Inorg. Chem. 2013, 52, 10368. (b) Liu, H.-Y.: Ma, J.-F.: Liu, Y.-Y.: Yang, J. Crust. Eng. Comm, 2013, 15, 2699.
5. Solomon, T. W. G: Fryble, C. B. Organic Chemistry, $9^{\text {th }}$:

Wiley: NJ, L.S.A, 2008; p 808.
6. Sheldrick, G. M., SHELXTL. Version 6. Bruker AXS Inc. Madison, Wisconsin, USA, 2001.
7. Brandenburg, K. DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany. 1998.
8. Shen, L.: Liu, J.-G Chin. J. Struct. Chem. 2001, 7, 253.
9. Croitor, L.: Chisca, D.: Coropceanu, E. B.: Fonari, M. S. Acta Crust. 2013, E69, m454.
10. Liao, J.-H.: Lai, C.-Y.: Ho, C.-D.: Su, C.-T. Inorg. Chem. Commun. 2004, 7, 402.
11. (a) Wang, R.: Jiang, F.: Han, L.: Gong, Y.: Zhou, Y.: Hong, M. J. Mol. Struct. 2004, 699, 79. (b) Rueff, J.-M.: Pillet, S.: Claiser, Ň.: Bonaventure, G: Souhassou M: Rabu, P. Elf, J. Inorg. Chem. 2002, 895. (c) Wang, R.: Yuan, D.: Jiang, F.: Han, L.: Gong, Y.: Hong, M. Crvst. Growth Des. 2006, 6, 1351.
12. Vargová, Z: Zeleòák, V.: Císaova, I.: Györyová, K. Thermochim. Acta 2004, 423, 149.
13. Zelěń, V: Vargov́, Z.: Györyov́, K. Spectrochim. Acta Pant A 2007, 66, 262.
14. Kim, J.: Lee, L.; Koo, B. K. Bull. Korean Chem. Soc. 2010, 31, 1743.

[^0]: $-\mathrm{x},-\mathrm{y},-\mathrm{z}$.

