• Title/Summary/Keyword: Isometries

Search Result 63, Processing Time 0.017 seconds

ISOMETRIES WITH SMALL BOUND ON $C^1$(X) SPACES

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.85-91
    • /
    • 1995
  • For a locally compact Hausdorff space, we denote by $C_0(X)$ the Banach space of all continuous complex valued functions defined on X which vanish at infinity, equipped with the usual sup norm. In case X is compact, we write C(X) instead of $C_0(X)$. A well-known Banach-Stone theorem states that the existence of an isometry between the function spaces $C_0(X)$ and $C_0(Y)$ implies X and Y are homemorphic. D. Amir [1] and M. Cambern [2] independently generalized this theorem by proving that if $C_0(X)$ and $C_0(Y)$ are isomorphic under an isomorphism T satisfying $\left\$\mid$ T \right\$\mid$ \left\$\mid$ T^1 \right\$\mid$ < 2$, then X and Y must also be homeomorphic.

  • PDF

GENERALIZED STABILITY OF ISOMETRIES ON REAL BANACH SPACES

  • Lee, Eun-Hwi;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.309-318
    • /
    • 2006
  • Let X and Y be real Banach spaces and ${\varepsilon}\;>\;0$, p > 1. Let f : $X\;{\to}\;Y$ be a bijective mapping with f(0) = 0 satisfying $$|\;{\parallel}f(x)-f(y){\parallel}-{\parallel}{x}-y{\parallel}\;|\;{\leq}{\varepsilon}{\parallel}{x}-y{\parallel}^p$$ for all $x\;{\in}\;X$ and, let $f^{-1}\;:\;Y\;{\to}\;X$ be uniformly continuous. Then there exist a constant ${\delta}\;>\;0$ and N(${\varepsilon},p$) such that lim N(${\varepsilon},p$)=0 and a unique surjective isometry I : X ${\to}$ Y satisfying ${\parallel}f(x)-I(x){\parallel}{\leq}N({\varepsilon,p}){\parallel}x{\parallel}^p$ for all $x\;{\in}\;X\;with\;{\parallel}x{\parallel}{\leq}{\delta}$.

GEOMETRIC CHARACTERIZATIONS OF CONCENTRATION POINTS FOR M$\"{O}$BIUS GROUPS

  • Sung Bok Hong;Jung Sook Sakong
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.945-950
    • /
    • 1994
  • Although the study of the limit points of discrete groups of M$\ddot{o}$bius transformations has been a fertile area for many decades, there are some very natural topological properties of the limit points which appear not to have been previously examined. Let $\Gamma$ be a nonelementary discrete group of hyperbolic isometries acting on the Poincare disc $B^m, m \geq 2$, and let $p \in \partial B^m$ be a limit point of $\Gamma$. By a neighborhood of p, we will always mean an open neighborhood of p in $\partial B^m$.

  • PDF

WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS

  • Jang, Sun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1275-1283
    • /
    • 2010
  • If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.

ISOMORPHISMS IN QUASI-BANACH ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.111-118
    • /
    • 2008
  • Using the Hyers-Ulam-Rassias stability method, we investigate isomorphisms in quasi-Banach algebras and derivations on quasi-Banach algebras associated with the Cauchy-Jensen functional equation $$2f(\frac{x+y}{2}+z)$$=f(x)+f(y)+2f(z), which was introduced and investigated in [2, 17]. The concept of Hyers-Ulam-Rassias stability originated from the Th. M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Furthermore, isometries and isometric isomorphisms in quasi-Banach algebras are studied.

A NOTE ON INVARIANT PSEUDOHOLOMORPHIC CURVES

  • Cho, Yong-Seung;Joe, Do-Sang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.347-355
    • /
    • 2001
  • Let ($X, \omega$) be a closed symplectic 4-manifold. Let a finite cyclic group G act semifreely, holomorphically on X as isometries with fixed point set $\Sigma$(may be empty) which is a 2-dimension submanifold. Then there is a smooth structure on the quotient X'=X/G such that the projection $\pi$:X$\rightarrow$X' is a Lipschitz map. Let L$\rightarrow$X be the Spin$^c$ -structure on X pulled back from a Spin$^c$-structure L'$\rightarrow$X' and b_2^$+(X')>1. If the Seiberg-Witten invariant SW(L')$\neq$0 of L' is non-zero and $L=E\bigotimesK^-1\bigotimesE$ then there is a G-invariant pseudo-holomorphic curve u:$C\rightarrowX$,/TEX> such that the image u(C) represents the fundamental class of the Poincare dual $c_1$(E). This is an equivariant version of the Taubes' Theorem.

  • PDF

SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS

  • Cavicchioli, Alberto;Molnar, Emil;Telloni, Agnese I.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.425-444
    • /
    • 2013
  • We construct some hyperbolic hyperelliptic space forms whose fundamental groups are generated by only two or three isometries. Each occurring group is obtained from a supergroup, which is an extended Coxeter group generated by plane re ections and half-turns. Then we describe covering properties and determine the isometry groups of the constructed manifolds. Furthermore, we give an explicit construction of space form of the second smallest volume nonorientable hyperbolic 3-manifold with one cusp.

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.

VOLUME OF C1,α-BOUNDARY DOMAIN IN EXTENDED HYPERBOLIC SPACE

  • Cho, Yun-Hi;Kim, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1143-1158
    • /
    • 2006
  • We consider the projectivization of Minkowski space with the analytic continuation of the hyperbolic metric and call this an extended hyperbolic space. We can measure the volume of a domain lying across the boundary of the hyperbolic space using an analytic continuation argument. In this paper we show this method can be further generalized to find the volume of a domain with smooth boundary with suitable regularity in dimension 2 and 3. We also discuss that this volume is invariant under the group of hyperbolic isometries and that this regularity condition is sharp.

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju;Tan, Ser Peow
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1131-1158
    • /
    • 2019
  • An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that $L_i$ intersects $L_{i+1},i=1,{\ldots},4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.