• Title/Summary/Keyword: Irreversible degradation

Search Result 32, Processing Time 0.025 seconds

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.369-376
    • /
    • 2022
  • In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.

Effects of Gultamate Synthesized during Photorespiration on Photosynthetic Carbon Metabolism (광호흡 과정에서 생성된 Glutamate가 광합성 탄소대사에 미치는 영향)

  • 이인철
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.277-288
    • /
    • 1988
  • The effects of ammonium ion and glutamate on CO2 fixation abilities and related carbon metabolism were investigated in pea (Pisum sativum L. cv. Sparkle) leaf discs under conditions favoring photorespiration (21% O2, 0.03% CO2) and nonphotorespiration (5% O2, 0.03% CO2). A concentration of more than 10 mM of NH4+ decreased the photosynthetic CO2 fixation and those inhibitory effects were more remarkable in 21% O2 than in 5% O2 conditions. The effect of glutamate on CO2 fixation was found to be independent of the O2 level, as glutamate increased the CO2 fixation under both 21% and 5% O2 conditions. L-methionine-dl-sulfoximine, an irreversible inhibitor of glutamate synthetase, however, inhibited the CO2 fixation markedly under 21% O2, but did not affect it under 5% O2 conditions. The treatment with NH4+ elevated the relative amounts of 14C incorporated into soluble components from 14CO2 with no relation to O2 levels, while glutamate increased 14C into insoluble components and neutral sugars. Glutamate, especially, seemed to stmulate the biosynthesis of starch under 5% O2 condition. These results indicated that NH4+ stimulated the degradation of sugar or starch and this proposal was confirmed by the increasing of pyruvate kinase activity in leaf discs treated with ammonium ion.

  • PDF

Carpomitra costata Extract Suppresses Interleukin-1β-Induced Inflammatory Response in SW1353 Human Chondrocytes through Suppressing NF-κB Signaling Pathway

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Osteoarthritis (OA) is an inflammatory degenerative joint disease that is accompanied by irreversible joint cartilage destruction. Recently, the antioxidant effects of Carpomitra costata, which is a type of brown algae, have been reported, but their effects on OA have not been investigated. In this study, the anti-osteoarthritic effect of the ethanol extract of C. costata (EECC) on SW1353 human chondrocytes was studied. Results showed that EECC significantly attenuated the interleukin-1β (IL-1β)-induced release of pro-inflammatory mediators, including prostaglandin E2 and nitric oxide (NO), as well as expressions of cyclo-oxygenase-2 and inducible NO synthase. EECC also inhibited the IL-1β-induced expressions of matrix metalloproteinase-1, -3, and -13 in SW1353 chondrocytes, which reduced their extracellular secretion. In addition, the oxidative stress induced by IL-1β was confirmed to be blocked by EECC due to the inhibition of reactive oxygen species generation. Moreover, EECC suppressed IL-1β-mediated translocation of nuclear factor-kappa B (NF-κB) from cytosol into the nucleus and the degradation of IκB-α, which indicates that EECC exhibits anti-inflammatory effects by inhibiting the NF-κB signaling pathway. These results are the first to demonstrate the anti-inflammatory activities of C. costata extracts in chondrocytes, thus suggesting that this algae extract may be used in the treatment of OA.

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

Environmental Impact Assessment in Urban Planning (도시계획과 환경영향평가)

  • Yong, Chung
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.2
    • /
    • pp.1-11
    • /
    • 1993
  • Most developing countries are experiencing rapid urbanization and the associated growth of industry and services. Cities are currently absorbing two-thirds of the total population in the developing world. Korea has about 85 percent of urban dwellers. World population will shift from being predominantly rural to predominantly urban around the turn of the century. Although cities play a key role in development process and make more than a proportionate contribution to national economic growth, especially cities are also the main catalysts of economic growth in developing countries, they can also be unhealthy, inefficient, and inequitable places to live. Most developing countries are increasingly unable to provide basic environmental infrastructure and services, whether in the megacities or in secondary urban centers. Of particular concern is the strain on natural resources brought by the increasing number of people, cars, and factories. They are generating ever greater amounts of urban wastes and emissions. They also exceed the capacity of regulatory authorities to control them and of nature to assimilate them. The environmental consequences are translated into direct negative impacts on human health, the quality of life, the productivity of the city, and the surrounding ecosystems. Environmental degradation threatens the long tenn availability and quality of natural resources critical to economic growth. Cities, with their higher and growing per capita energy use for domestic, industrial, and transport purpose also contribute a disproportionate share of the emission leading to global warming and acid rain. An important priority is to develop strategic approaches for managing the urban environment. The design of appropriate and lasting strategic responses requires first an understanding of the underlying causes of urban environmental deterioration, it is necessary that longer tenn objectives should be set for urban area to avoid irreversible ecological damage and to ensure lasting economic development. As a means to the preventive policies against the adverse effect, environmental impact assessment (EIA) serve to identify a project's possible environmental consequences early enough to allow their being taken into consideration in the decision making process for urban planning. This paper describes some considerations of EIA for urban planning-scoping, assessment process, measurement and prediction of impacts, pollution controls and supervision, and system planning for environmental preservation.

  • PDF

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells

  • Kim, Kab In;Kim, Hee Su;Kim, Hyung Soon;Yun, Jeong Woo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.187-195
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.

Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence

  • Park, Jeong-Woo;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.773-782
    • /
    • 2019
  • Cellular senescence is an irreversible form of cell cycle arrest. Senescent cells have a unique gene expression profile that is frequently accompanied by senescence-associated heterochromatic foci (SAHFs). Protein kinase CK2 (CK2) downregulation can induce trimethylation of histone H3 Lys 9 (H3K9me3) and SAHFs formation by activating SUV39h1. Here, we present evidence that the PI3K-AKT-mTOR-reactive oxygen species-p53 pathway is necessary for CK2 downregulation-mediated H3K9me3 and SAHFs formation. CK2 downregulation promotes SUV39h1 stability by inhibiting its proteasomal degradation in a p53-dependent manner. Moreover, the dephosphorylation status of Ser 392 on p53, a possible CK2 target site, enhances the nuclear import and subsequent stabilization of SUV39h1 by inhibiting the interactions between p53, MDM2, and SUV39h1. Furthermore, $p21^{Cip1/WAF1}$ is required for CK2 downregulation-mediated H3K9me3, and dephosphorylation of Ser 392 on p53 is important for efficient transcription of $p21^{Cip1/WAF}$. Taken together, these results suggest that CK2 downregulation induces dephosphorylation of Ser 392 on p53, which subsequently increases the stability of SUV39h1 and the expression of $p21^{Cip1/WAF1}$, leading to H3K9me3 and SAHFs formation.

Effective problem mitigation strategy of lithium secondary battery silicon anode utilized liquid precursor (에틸벤젠을 이용한 실리콘 산화물 음극재의 효과적인 카본 코팅 전략)

  • Sangryeol Lee;Seongsu Park;Sujong Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.62-68
    • /
    • 2023
  • Silicon (Si) is considered as a promising substitute for the conventional graphite due to its high theoretical specific capacity (3579 mAh/g, Li15Si4) and proper working voltage (~0.3V vs Li+/Li). However, the large volume change of Si during (de)lithiation brings about severe degradation of battery performances, rendering it difficult to be applied in the practical battery directly. As a one feasible candidate of industrial Si anode, silicon monoxide (SiOx) demonstrates great electrochemical stability with its specialized strategy, downsized Si nanocrystallites surrounded by Li+ inactive buffer phase (Li2O and Li4SiO4). Nevertheless, SiOx inherently has the initial irreversible capacity and poor electrical conductivity. To overcome those issues, conformal carbon coating has been performed on SiOx utilizing ethylbenzene as the carbon precursor of chemical vapor deposition (CVD). Through various characterizations, it is confirmed that the carbon is homogeneously coated on the surface of SiOx. Accordingly, the carbon-coated SiOx from CVD using ethylbenzene demonstrates 73% of the first cycle efficiency and great cycle life (88.1% capacity retention at 50th cycle). This work provides a promising synthetic route of the uniform and scalable carbon coating on Si anode for high-energy density.

Effect of Moisture Absorption on the Shear Strength of Fiber-reinforced Composites (섬유강화 복합재료의 전단강도에 미치는 흡습의 영향)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man;Kim, Dong-Hun
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Composite materials are currently used in aero-space industry, sport and leisure industry but it has many problems such as mechanical properties deterioration by moisture absorption. In this study, we appraised interlaminar shear strength with specimen that immersed/ immersed-dried in water environment(distilled/sea) during $100{\sim}200$days. In the result, properties degradation of resin part and silan part by moisture absorption is judged early on main cause of interlaminar shear strength, and later destruction of mechanical bonding between silan part and fiber by moisture absorption is Judged later main cause of interlaminar shear strength. In conclusion, the recovery of interlaminar shear strength is judged to difficult due to interfacial destruction by moisture when pass over irreversible by moisture in composite material.

Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation (망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법)

  • Kang, Ki-Hoon;Shin, Hyun-Sang;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.115-123
    • /
    • 2007
  • Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.