Browse > Article
http://dx.doi.org/10.15433/ksmb.2020.12.2.099

Carpomitra costata Extract Suppresses Interleukin-1β-Induced Inflammatory Response in SW1353 Human Chondrocytes through Suppressing NF-κB Signaling Pathway  

Choi, Yung Hyun (Anti-Aging Research Center, Dongeui University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.12, no.2, 2020 , pp. 99-107 More about this Journal
Abstract
Osteoarthritis (OA) is an inflammatory degenerative joint disease that is accompanied by irreversible joint cartilage destruction. Recently, the antioxidant effects of Carpomitra costata, which is a type of brown algae, have been reported, but their effects on OA have not been investigated. In this study, the anti-osteoarthritic effect of the ethanol extract of C. costata (EECC) on SW1353 human chondrocytes was studied. Results showed that EECC significantly attenuated the interleukin-1β (IL-1β)-induced release of pro-inflammatory mediators, including prostaglandin E2 and nitric oxide (NO), as well as expressions of cyclo-oxygenase-2 and inducible NO synthase. EECC also inhibited the IL-1β-induced expressions of matrix metalloproteinase-1, -3, and -13 in SW1353 chondrocytes, which reduced their extracellular secretion. In addition, the oxidative stress induced by IL-1β was confirmed to be blocked by EECC due to the inhibition of reactive oxygen species generation. Moreover, EECC suppressed IL-1β-mediated translocation of nuclear factor-kappa B (NF-κB) from cytosol into the nucleus and the degradation of IκB-α, which indicates that EECC exhibits anti-inflammatory effects by inhibiting the NF-κB signaling pathway. These results are the first to demonstrate the anti-inflammatory activities of C. costata extracts in chondrocytes, thus suggesting that this algae extract may be used in the treatment of OA.
Keywords
Osteoarthritis; Carpomitra costata; IL-$1{\beta}$; inflammation; NF-${\kappa}B$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Shin, S. K., Kim, J. H., Lee, J. H., Son, Y. H., Lee, M. W., Kim, H. J., Noh, S. A., Kim, K. P., Kim, I. G. and Lee, M. J. 2017. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp. Mol. Med. 49, e287.   DOI
2 Ziskoven, C., Jager, M., Zilkens, C., Bloch, W., Brixius, K. and Krauspe, R. 2010. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop. Rev. (Pavia) 2, e23.
3 Zheng, J., Hewage, S. R., Piao, M. J., Kang, K. A., Han, X., Kang, H. K., Yoo, E. S., Koh, Y. S., Lee, N. H., Ko, C. S., Lee, J. C., Ko, M. H. and Hyun, J. W. 2016. Photoprotective effect of Carpomitra costata extract against ultraviolet B-induced oxidative damage in human keratinocytes. J. Environ. Pathol. Toxicol. Oncol. 35, 11-28.   DOI
4 Rigoglou, S. and Papavassiliou, A. G. 2013. The NF-κB signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580-2584.   DOI
5 Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5, 1266-1283.   DOI
6 O'Dea, E. and Hoffmann, A. 2010. The regulatory logic of the NF-kappaB signaling system. Cold Spring Harb Perspect. Biol. 2, a000216.   DOI
7 Hochberg, M., Chevalier, X., Henrotin, Y., Hunter, D. J. and Uebelhart, D. 2013. Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: what's the evidence? Curr. Med. Res. Opin. 29, 259-267.   DOI
8 Brittberg, M., Gomoll, A. H., Canseco, J. A., Far, J., Lind, M. and Hui, J. 2016. Cartilage repair in the degenerative ageing knee. Acta. Orthop. 87, S26-38.
9 Andriacchi, T. P., Favre, J., Erhart-Hledik, J. C. and Chu, C. R. 2015. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann. Biomed. Eng. 43, 376-387.   DOI
10 Son, Y. O. and Chun, J. S. 2018. Estrogen-related receptor γ is a novel catabolic regulator of osteoarthritis pathogenesis. BMB Rep. 51, 165-166.   DOI
11 Martel-Pelletier, J., Boileau, C., Pelletier, J. P. and Roughley, P. J. 2008. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22, 351-384.   DOI
12 Blasioli, D. J. and Kaplan, D. L. 2014. The roles of catabolic factors in the development of osteoarthritis. Tissue Eng. Part B. Rev. 20, 355-363.   DOI
13 Jotanovic, Z., Mihelic, R., Sestan, B. and Dembic, Z. 2012. Role of interleukin-1 inhibitors in osteoarthritis: an evidence-based review. Drugs Aging 29, 343-358.   DOI
14 Rai, M. F. and Sandell, L. J. 2011. Inflammatory mediators: tracing links between obesity and osteoarthritis. Crit. Rev. Eukaryot. Gene Expr. 21, 131-142.   DOI
15 Panina, S. B., Krolevets, I. V., Milyutina, N. P., Sagakyants, A. B., Kornienko, I. V., Ananyan, A. A., Zabrodin, M. A., Plotnikov, A. A. and Vnukov, V. V. 2017. Circulating levels of proinflammatory mediators as potential biomarkers of post-traumatic knee osteoarthritis development. J. Orthop. Traumatol. 18, 349-357.   DOI
16 Lepetsos, P. and Papavassiliou, A. G. 2016. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta. 1862, 576-591.   DOI
17 Ramonda, R., Lorenzin, M., Modesti, V., Campana, C., Ortolan, A., Frallonardo, P. and Punzi, L. 2013. Serological markers of erosive hand osteoarthritis. Eur. J. Intern. Med. 24, 11-15.   DOI
18 Ding, Q. H., Cheng, Y., Chen, W. P., Zhong, H. M. and Wang, X. H. 2013. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. Eur. J. Pharmacol. 708, 1-7.   DOI
19 Goldring, M. B. and Otero, M. 2011. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471-478.   DOI
20 Roman-Blas, J. A. and Jimenez, S. A. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14, 839-848.   DOI
21 Li, D., Xie, G. and Wang, W. 2012. Reactive oxygen species: the 2-edged sword of osteoarthritis. Am. J. Med. Sci. 344, 486-490.   DOI
22 Klinge, S. A. and Sawyer, G. A. 2013. Effectiveness and safety of topical versus oral nonsteroidal anti-inflammatory drugs: a comprehensive review. Phys. Sportsmed. 41, 64-74.   DOI
23 Herndon, C. M. 2012. Topical delivery of nonsteroidal anti-inflammatory drugs for osteoarthritis. J. Pain Palliat. Care Pharmacother. 26, 18-23.   DOI
24 Fitton, J. H. 2011. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 9, 1731-1760.   DOI
25 Lee, G. H., Jin, S. W., Kim, S. J., Pham, T. H., Choi, J. H. and Jeong, H. G. 2019. Tetrabromobisphenol A induces MMP-9 expression via NADPH oxidase and the activation of ROS, MAPK, and Akt pathways in human breast cancer MCF-7 cells. Toxicol. Res. 35, 93-101.   DOI
26 Myers, S. P., O'Connor, J., Fitton, J. H., Brooks, L., Rolfe, M., Connellan, P., Wohlmuth, H., Cheras, P. A. and Morris, C. 2010. A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biologics 4, 33-44.
27 Shin, H. C., Hwang, H. J., Kang, K. J. and Lee, B. H. 2006. An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29, 165-171.   DOI