References
- 이두희, 신현상, 임동민, 강기훈, 2007, 천연 망간산화물에 의한 페놀계 화합물의 제거특성 비교, 대한환경공학회.한국대기환 경학회.한국폐기물학회 2007년 공동학술대회 논문집(CD Rom), p. 1656-1660
- 이승환, 정재웅, 류혜림, 김영진, 남경필, 2007, 돌연변이 미생물 균주와 birnessite를 이용한 토양 내 phenanthrene 제거, 대한환경 공학회.한국대기환경학회.한국폐기물학회 2007년 공동학술 대회 논문집(CD Rom), p. 938-941
- 임동민, 강기훈, 신현상, 2006, 망간산화물을 이용한 1-Naphthol 의 산화 제거 연구, 대한환경공학회, 28(5), 535-542
- Agrawal, A. and Tratnyek, P.G., 1996, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30, 153-160 https://doi.org/10.1021/es950211h
- Alexander, M., 1994, Biodegradation and bioremediation, Academic Press, San Diego, CA.
- Alexander, M., 1995, How toxic are toxic chemicals in soil?, Environ. Sci. Technol., 29, 2713-2712 https://doi.org/10.1021/es00011a003
- Baker, M.D. and Mayfield, C.I., 1980, Microbial and nonmicrobial decomposition of chlorophenols and phenols in soil, Water Air Soil Pollut., 13, 411-424 https://doi.org/10.1007/BF02191842
- Bollag, J.-M., 1983, In Aquatic and terrestrial humic substances, Christman, R. F., Gjessing, E. T., Eds., Ann Arbor Science Publishers, Ann Arbor, MI., p. 127-141
- Bollag, J.-M., 1992, Decontaminating Soil with Enzymes: An in situ method using phenolic and anilinic compounds, Environ. Sci. Technol., 26, p. 1876-1881 https://doi.org/10.1021/es00034a002
- Bollag, J.-M., Shuttleworth, K.L., and Anderson, D.H., 1988, Laccase-mediated detoxification of phenolic compounds, Appl. Environ. Microbiol., 54, 3086-3091
- Bollag, J.-M., Myers, C., Pal, S., and Huang, P.M., 1995, The role of abiotic and biotic catalysts in the transformation of phenolic compounds, In Environmental impact of soil component interactions, Vol. 1, P. M. Huang et al., Eds., CRC/Lewis Publishers, p. 299-310
- Calderbank, A., 1989, The occurrence and significance of bound pesticide residues in soil, Rev. Environ. Contam. Toxicol., 108, 71-103
- Call, H.P. and Mucke, I., 1997, History, overview and application of mediated lignolytic systems, especially laccase-mediatorsystems (Lignozym-Process), J. Biotechnol., 53, 163-202 https://doi.org/10.1016/S0168-1656(97)01683-0
- Dec, J. and Bollag, J.-M., 1988, Microbial release and degradation of catechol and chlorophenols bound to synthetic humus, Soil Sci. Soc. Am. J., 52, 1366-1371 https://doi.org/10.2136/sssaj1988.03615995005200050030x
- Dec, J. and Bollag, J.-M., 1994, Dehalogenation of chlorinated phenols during oxidative coupling, Environ. Sci. Technol., 28, 484-490 https://doi.org/10.1021/es00052a022
- Dec, J. and Bollag, J.-M., 1997, Determination of covalent and noncovalent binding interactions of water polluted with phenols, Biotechnol. Bioeng., 44, 1132-1139 https://doi.org/10.1002/bit.260440915
- Dec, J., Haider, K., Rangaswamy, V., Schffer, A., Fernandes, E., and Bollag, J.-M., 1997, Formation of soil-bound residues of cyprodinil and their plant uptake, J. Agric. Food Chem., 45, 514-520 https://doi.org/10.1021/jf960532s
- Evans, C.S., Dutton, M.V., Guillen, F., and Veness, R.G., 1994, Enzymes and small molcular mass agents involved with lignocellulose degradation, FEMS Microbiol. Rev., 13, 235-240 https://doi.org/10.1111/j.1574-6976.1994.tb00044.x
- Hatzinger, P.B. and Alexander, M., 1995, Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545 https://doi.org/10.1021/es00002a033
- Hsu, T.-S. and Bartha, R., 1974, Biodegradation of chloroaniline-humus complexes in soil and in culture solution, Soil Sci., 118, 213-220 https://doi.org/10.1097/00010694-197409000-00011
- Jung, J.-W., Lee, S., Ryu, H., Nam, K., and Kang, K.-H., 2007a, Enhanced reactivity of hydroxylated PAHs to birnessite in soil: reaction kinetics and nonextractable residue formation, Environ. Toxicol. Chem., In Press
- Jung, J.-W., Lee, S.H., Ryu, H., Kang, K.-H., and Nam, K., 2007b, Detoxification of phenol through bound residue formation by birnessite in soil: transformation kinetics and toxicity, Environ. Sci. Health Part A, In Press
- Kang, K.-H. and Park, H., 2006, Oxidative-coupling reaction of phenolic and aniline compounds using primary mineral of Mn oxide, Advances in Asian Environ. Eng., 5(1), 1-8
- Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 2002, Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in presence of phenolic mediators and humic acids, Wat. Res., 36, 4907-4915 https://doi.org/10.1016/S0043-1354(02)00198-7
- Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 2004, Effect of phenolic mediators and humic acid on cyprodinil transformation in presence of birnessite, Wat. Res., 38, 2737-2745 https://doi.org/10.1016/j.watres.2004.03.018
- Kang, K.-H., Lim, D.-M., and Shin, H., 2006, Oxidative-coupling reaction of TNT reduction products by manganese oxide, Wat. Res., 40(5), 903-910 (2006) https://doi.org/10.1016/j.watres.2005.12.036
- Karam, J. and Nicell, J.A., 1997, Potential applications of enzymes in waste treatment, J. Chem. Tech. Biotechnol., 69, 141-153 https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
- Kim, J.-E., Fernandes, E., and Bollag, J.-M., 1997, Enzymatic coupling of the herbicide bentazon with humus monomers and characterization of reaction products, Environ. Sci. Technol., 31(8), 2392-2398 https://doi.org/10.1021/es961016l
- Klibanov, A.M. Alberti, B.N., Morris, E.D., and Felshin, L.M., 1980, Enzymatic removal of toxic phenols and anilines from wastewater, J. Appl. Biochem., 2, 414-421
-
Kung, K.-H. and McBride, M.B., 1988, Electron transfer processes between hydroquinone and hausmannite (
$Mn_3O_4$ ), Clays and Clay Minerals, 36, 297-302 https://doi.org/10.1346/CCMN.1988.0360402 - Leonowicz, A. and Bollag, J.-M., 1987, Laccases in soil and the feasibility of their extraction, Soil Biol. Biochem., 19, 237-242 https://doi.org/10.1016/0038-0717(87)90003-4
-
Majcher, E.H., Chorover, J., Bollag, J.-M., and Huang, P.M., 2000, Evolution of
$CO_2$ during birnessite-induced oxidation of$^{14}C$ -labeled catechol, Soil Sci. Soc. Am. J., 64, 157-163 https://doi.org/10.2136/sssaj2000.641157x - McBride, M.B., 1987, Adsorption and oxidation of phenolic compounds by iron and manganese oxides, Soil Sci. Soc. Am. J., 51, 1466-1472 https://doi.org/10.2136/sssaj1987.03615995005100060012x
- McBride, M.B., 1989, Oxidation of dihydroxybenzens in aerated aqueous suspensions of birnessite, Clays and Clay Minerals, 37, 341-347 https://doi.org/10.1346/CCMN.1989.0370407
-
Nico, P.S. and Zasoski, R.J., 2000, Importance of Mn(III) availability on the rate of Cr(III) oxidation on
$\delta-MnO_2$ , Environ. Sci. Technol., 34, 3363-3367 https://doi.org/10.1021/es991462j - Oscarson, D.W., Huang, P.M., Defosse, C., and Herbillon, A., 1981, Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments, Nature (London), 291, 50-51 https://doi.org/10.1038/291050a0
- Park, J.-W, Dec, J., Kim, J.-E., and Bollag, J.-M., 1999, Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite, Environ. Sci. Technol., 33, 2028-2034 https://doi.org/10.1021/es9810787
- Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C., and Mininni, R., 1995, Manganese and iron oxides as reactants for oxidation of chlorophenols, Soil Sci. Soc. Am. J., 59, 444-452 https://doi.org/10.2136/sssaj1995.03615995005900020025x
- Roberts, T.R., Klein, W., Still, G.G., Kearney, P.C., Drescher, N., Desmoras, J., Essen, H.O., Aaharonson, N., and Vonk, J., 1984, Non-extractable pesticide residues in soils and plants, Pure Appl. Chem., 56, 945-956 https://doi.org/10.1351/pac198456070945
- Shindo, H. and Huang, P.M., 1982, Role of Mn(IV) oxide in abiotic formation of humic substances in the environment, Nature (London), 298, 363-365 https://doi.org/10.1038/298363a0
- Sjoblad, R.D. and Bollag, J.-M., 1981, Oxidative coupling of aromatic compounds by enzymes from soil microorganisms, In: Soil Biochemistry, Vol. 5, Paul, E. A., and Ladd, J. N. Eds., Marcel Dekker, New York., p. 113-152
- Skujins, J.J., 1967, Enzymes in soil, In: McLaren, A.D., and Peterson, G.H. Eds., Soil biochemistry, Vol. 1, Marcel Dekker, New York, p. 371-414
- Stone, A.T., 1987, Reductive dissolution of manganese(III/IV) oxides by substituted phenols, Environ. Sci. Technol., 21, 979-988 https://doi.org/10.1021/es50001a011
- Stone, A.T. and Morgan, J.J., 1984, Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with Hydroquinone, Environ. Sci. Technol., 18, 450-456 https://doi.org/10.1021/es00124a011
- Sunda, W.G. and Kieber, D.J., 1994, Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substances, Nature (London), 367, 62-64 https://doi.org/10.1038/367062a0
-
Thorn, K.A., Pettigrew, P.J., Golbenberg, W.S., and Weber, E.J., 1996, Covalent binding of aniline to humic substances. 2.
$^{15}N$ NMR studies of nucleophilic addition reactions, Environ. Sci. Technol., 30, 2764-2775 https://doi.org/10.1021/es9509339 - Wang, M.C. and Huang, P.M., 1992, Significance of Mn(IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments, Sci. Total Environ., 113, 147-157 https://doi.org/10.1016/0048-9697(92)90022-K
- Weber, Jr., W.J. and Huang Q., 2003, Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling, Environ. Sci. Technol., 37, 4221-4227 https://doi.org/10.1021/es030330u