Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation

망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법

  • Kang, Ki-Hoon (Technology Research Institute, Dealim Industrial Co., Ltd.) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Nam, Kyoung-Phile (School of Civil, Urban and Geosystem Engineering, Seoul National University)
  • 강기훈 (대림산업(주) 기술연구소) ;
  • 신현상 (서울산업대학교 환경공학과) ;
  • 남경필 (서울대학교 지구환경시스템공학부)
  • Published : 2007.10.31

Abstract

Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.

토양환경내 오염물질의 고정화 현상은 오염물질의 거동을 결정하는 주요 과정중 하나이다. 특히 생물화학적 반응에 대해 비가역적이며, 이로부터 오염물질의 독성도 동시에 제거되는 산화-공유결합반응에 의한 고정화 반응은 오염물질의 주요한 자연정화 메커니즘중 하나일 뿐만 아니라, 이를 공학적으로 응용함으로써 기존의 분해에 의존해 오던 정화 방법에 비해 보다 효과적으로 오염토양 및 지하수의 복원에 적용될 수 있다. 특히 이러한 산화-공유결합반응을 일으키는 촉매로서의 역할을 하는 망간산화물은 미생물 자체, 혹은 미생물을 포함한 균류, 식물체 등으로부터 추출한 산화-환원 효소를 이용하는 것에 비해 실용적인 측면에서 많은 장점을 가지고 있다. 이에 본고에서는 망간산화물을 이용한 유기오염물질의 정화 기작에 대한 최근의 다양한 연구 결과들을 정리하였다. 특히 망간산화물에 대해 반응성을 가지지 않는 안정한 유기오염물의 처리를 위한 관련 연구로서 반응매개체를 적용한 사례와, PAHs 처리기법, $Fe^0$를 이용한 환원 전처리 등 적절한 전처리 기법과의 조합에 의한 처리방법 등에 대한 연구결과를 소개하였으며, 이로부터 보다 광범위한 적용 가능성을 제시하고자 하였다. 자연계 내에서 일어나는 탄소의 순환과정을 고려할 때 산화-공유결합 반응에 의한 고정화 및 안정화 반응은 특히 분해에 대해 높은 내성을 가지는 방향족 유기오염물질의 제거에 보다 효과적으로 적용될 수 있는 친환경적 기법으로 사용될 수 있을 것이다.

Keywords

References

  1. 이두희, 신현상, 임동민, 강기훈, 2007, 천연 망간산화물에 의한 페놀계 화합물의 제거특성 비교, 대한환경공학회.한국대기환 경학회.한국폐기물학회 2007년 공동학술대회 논문집(CD Rom), p. 1656-1660
  2. 이승환, 정재웅, 류혜림, 김영진, 남경필, 2007, 돌연변이 미생물 균주와 birnessite를 이용한 토양 내 phenanthrene 제거, 대한환경 공학회.한국대기환경학회.한국폐기물학회 2007년 공동학술 대회 논문집(CD Rom), p. 938-941
  3. 임동민, 강기훈, 신현상, 2006, 망간산화물을 이용한 1-Naphthol 의 산화 제거 연구, 대한환경공학회, 28(5), 535-542
  4. Agrawal, A. and Tratnyek, P.G., 1996, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30, 153-160 https://doi.org/10.1021/es950211h
  5. Alexander, M., 1994, Biodegradation and bioremediation, Academic Press, San Diego, CA.
  6. Alexander, M., 1995, How toxic are toxic chemicals in soil?, Environ. Sci. Technol., 29, 2713-2712 https://doi.org/10.1021/es00011a003
  7. Baker, M.D. and Mayfield, C.I., 1980, Microbial and nonmicrobial decomposition of chlorophenols and phenols in soil, Water Air Soil Pollut., 13, 411-424 https://doi.org/10.1007/BF02191842
  8. Bollag, J.-M., 1983, In Aquatic and terrestrial humic substances, Christman, R. F., Gjessing, E. T., Eds., Ann Arbor Science Publishers, Ann Arbor, MI., p. 127-141
  9. Bollag, J.-M., 1992, Decontaminating Soil with Enzymes: An in situ method using phenolic and anilinic compounds, Environ. Sci. Technol., 26, p. 1876-1881 https://doi.org/10.1021/es00034a002
  10. Bollag, J.-M., Shuttleworth, K.L., and Anderson, D.H., 1988, Laccase-mediated detoxification of phenolic compounds, Appl. Environ. Microbiol., 54, 3086-3091
  11. Bollag, J.-M., Myers, C., Pal, S., and Huang, P.M., 1995, The role of abiotic and biotic catalysts in the transformation of phenolic compounds, In Environmental impact of soil component interactions, Vol. 1, P. M. Huang et al., Eds., CRC/Lewis Publishers, p. 299-310
  12. Calderbank, A., 1989, The occurrence and significance of bound pesticide residues in soil, Rev. Environ. Contam. Toxicol., 108, 71-103
  13. Call, H.P. and Mucke, I., 1997, History, overview and application of mediated lignolytic systems, especially laccase-mediatorsystems (Lignozym-Process), J. Biotechnol., 53, 163-202 https://doi.org/10.1016/S0168-1656(97)01683-0
  14. Dec, J. and Bollag, J.-M., 1988, Microbial release and degradation of catechol and chlorophenols bound to synthetic humus, Soil Sci. Soc. Am. J., 52, 1366-1371 https://doi.org/10.2136/sssaj1988.03615995005200050030x
  15. Dec, J. and Bollag, J.-M., 1994, Dehalogenation of chlorinated phenols during oxidative coupling, Environ. Sci. Technol., 28, 484-490 https://doi.org/10.1021/es00052a022
  16. Dec, J. and Bollag, J.-M., 1997, Determination of covalent and noncovalent binding interactions of water polluted with phenols, Biotechnol. Bioeng., 44, 1132-1139 https://doi.org/10.1002/bit.260440915
  17. Dec, J., Haider, K., Rangaswamy, V., Schffer, A., Fernandes, E., and Bollag, J.-M., 1997, Formation of soil-bound residues of cyprodinil and their plant uptake, J. Agric. Food Chem., 45, 514-520 https://doi.org/10.1021/jf960532s
  18. Evans, C.S., Dutton, M.V., Guillen, F., and Veness, R.G., 1994, Enzymes and small molcular mass agents involved with lignocellulose degradation, FEMS Microbiol. Rev., 13, 235-240 https://doi.org/10.1111/j.1574-6976.1994.tb00044.x
  19. Hatzinger, P.B. and Alexander, M., 1995, Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545 https://doi.org/10.1021/es00002a033
  20. Hsu, T.-S. and Bartha, R., 1974, Biodegradation of chloroaniline-humus complexes in soil and in culture solution, Soil Sci., 118, 213-220 https://doi.org/10.1097/00010694-197409000-00011
  21. Jung, J.-W., Lee, S., Ryu, H., Nam, K., and Kang, K.-H., 2007a, Enhanced reactivity of hydroxylated PAHs to birnessite in soil: reaction kinetics and nonextractable residue formation, Environ. Toxicol. Chem., In Press
  22. Jung, J.-W., Lee, S.H., Ryu, H., Kang, K.-H., and Nam, K., 2007b, Detoxification of phenol through bound residue formation by birnessite in soil: transformation kinetics and toxicity, Environ. Sci. Health Part A, In Press
  23. Kang, K.-H. and Park, H., 2006, Oxidative-coupling reaction of phenolic and aniline compounds using primary mineral of Mn oxide, Advances in Asian Environ. Eng., 5(1), 1-8
  24. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 2002, Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in presence of phenolic mediators and humic acids, Wat. Res., 36, 4907-4915 https://doi.org/10.1016/S0043-1354(02)00198-7
  25. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 2004, Effect of phenolic mediators and humic acid on cyprodinil transformation in presence of birnessite, Wat. Res., 38, 2737-2745 https://doi.org/10.1016/j.watres.2004.03.018
  26. Kang, K.-H., Lim, D.-M., and Shin, H., 2006, Oxidative-coupling reaction of TNT reduction products by manganese oxide, Wat. Res., 40(5), 903-910 (2006) https://doi.org/10.1016/j.watres.2005.12.036
  27. Karam, J. and Nicell, J.A., 1997, Potential applications of enzymes in waste treatment, J. Chem. Tech. Biotechnol., 69, 141-153 https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
  28. Kim, J.-E., Fernandes, E., and Bollag, J.-M., 1997, Enzymatic coupling of the herbicide bentazon with humus monomers and characterization of reaction products, Environ. Sci. Technol., 31(8), 2392-2398 https://doi.org/10.1021/es961016l
  29. Klibanov, A.M. Alberti, B.N., Morris, E.D., and Felshin, L.M., 1980, Enzymatic removal of toxic phenols and anilines from wastewater, J. Appl. Biochem., 2, 414-421
  30. Kung, K.-H. and McBride, M.B., 1988, Electron transfer processes between hydroquinone and hausmannite ($Mn_3O_4$), Clays and Clay Minerals, 36, 297-302 https://doi.org/10.1346/CCMN.1988.0360402
  31. Leonowicz, A. and Bollag, J.-M., 1987, Laccases in soil and the feasibility of their extraction, Soil Biol. Biochem., 19, 237-242 https://doi.org/10.1016/0038-0717(87)90003-4
  32. Majcher, E.H., Chorover, J., Bollag, J.-M., and Huang, P.M., 2000, Evolution of $CO_2$ during birnessite-induced oxidation of $^{14}C$-labeled catechol, Soil Sci. Soc. Am. J., 64, 157-163 https://doi.org/10.2136/sssaj2000.641157x
  33. McBride, M.B., 1987, Adsorption and oxidation of phenolic compounds by iron and manganese oxides, Soil Sci. Soc. Am. J., 51, 1466-1472 https://doi.org/10.2136/sssaj1987.03615995005100060012x
  34. McBride, M.B., 1989, Oxidation of dihydroxybenzens in aerated aqueous suspensions of birnessite, Clays and Clay Minerals, 37, 341-347 https://doi.org/10.1346/CCMN.1989.0370407
  35. Nico, P.S. and Zasoski, R.J., 2000, Importance of Mn(III) availability on the rate of Cr(III) oxidation on $\delta-MnO_2$, Environ. Sci. Technol., 34, 3363-3367 https://doi.org/10.1021/es991462j
  36. Oscarson, D.W., Huang, P.M., Defosse, C., and Herbillon, A., 1981, Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments, Nature (London), 291, 50-51 https://doi.org/10.1038/291050a0
  37. Park, J.-W, Dec, J., Kim, J.-E., and Bollag, J.-M., 1999, Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite, Environ. Sci. Technol., 33, 2028-2034 https://doi.org/10.1021/es9810787
  38. Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C., and Mininni, R., 1995, Manganese and iron oxides as reactants for oxidation of chlorophenols, Soil Sci. Soc. Am. J., 59, 444-452 https://doi.org/10.2136/sssaj1995.03615995005900020025x
  39. Roberts, T.R., Klein, W., Still, G.G., Kearney, P.C., Drescher, N., Desmoras, J., Essen, H.O., Aaharonson, N., and Vonk, J., 1984, Non-extractable pesticide residues in soils and plants, Pure Appl. Chem., 56, 945-956 https://doi.org/10.1351/pac198456070945
  40. Shindo, H. and Huang, P.M., 1982, Role of Mn(IV) oxide in abiotic formation of humic substances in the environment, Nature (London), 298, 363-365 https://doi.org/10.1038/298363a0
  41. Sjoblad, R.D. and Bollag, J.-M., 1981, Oxidative coupling of aromatic compounds by enzymes from soil microorganisms, In: Soil Biochemistry, Vol. 5, Paul, E. A., and Ladd, J. N. Eds., Marcel Dekker, New York., p. 113-152
  42. Skujins, J.J., 1967, Enzymes in soil, In: McLaren, A.D., and Peterson, G.H. Eds., Soil biochemistry, Vol. 1, Marcel Dekker, New York, p. 371-414
  43. Stone, A.T., 1987, Reductive dissolution of manganese(III/IV) oxides by substituted phenols, Environ. Sci. Technol., 21, 979-988 https://doi.org/10.1021/es50001a011
  44. Stone, A.T. and Morgan, J.J., 1984, Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with Hydroquinone, Environ. Sci. Technol., 18, 450-456 https://doi.org/10.1021/es00124a011
  45. Sunda, W.G. and Kieber, D.J., 1994, Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substances, Nature (London), 367, 62-64 https://doi.org/10.1038/367062a0
  46. Thorn, K.A., Pettigrew, P.J., Golbenberg, W.S., and Weber, E.J., 1996, Covalent binding of aniline to humic substances. 2. $^{15}N$NMR studies of nucleophilic addition reactions, Environ. Sci. Technol., 30, 2764-2775 https://doi.org/10.1021/es9509339
  47. Wang, M.C. and Huang, P.M., 1992, Significance of Mn(IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments, Sci. Total Environ., 113, 147-157 https://doi.org/10.1016/0048-9697(92)90022-K
  48. Weber, Jr., W.J. and Huang Q., 2003, Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling, Environ. Sci. Technol., 37, 4221-4227 https://doi.org/10.1021/es030330u