• Title/Summary/Keyword: Irreducible AOP

Search Result 17, Processing Time 0.025 seconds

Design of Multiplier based on Programmable Cellular Automata (프로그램 가능한 셀룰라 오토마타를 이용한 곱셈기 설계)

  • 박혜영;전준철;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.521-523
    • /
    • 2003
  • 본 논문에서는 프로그램 가능한 셀룰라 오토마타(Programmable Cellular Automata, PCA)를 이용한 곱셈기를 제안한다. 본 논문에서 제안한 구조는 연산 후 늘어나는 원소의 수를 제한하기 위하여 이용되는 기약다항식(irreducible polynomial)으로서 All One Polynomial(AOP)을 사용하며, 주기적 경계 셀룰라 오토마타(Periodic Boundary Cellular Automata, PBCA)의 구조적인 특성을 사용함으로써 정규성을 높이고 하드웨어 복잡도와 시간 복잡도를 줄일 수 있는 장점을 가지고 있다. 제안된 곱셈기는 시간적. 공간적인 면에서 아주 간단히 구성되어 지수연산을 위한 하드웨어 설계나 오류 수정 코드(error correcting code)의 연산에 효율적으로 이용될 수 있을 것이다.

  • PDF

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

Low System Complexity Parallel Multiplier for a Class of Finite Fields based on AOP (시스템 복잡도 개선을 위한 AOP 기반의 병렬 유한체 승산기)

  • 변기영;나기수;윤병희;최영희;한성일;김흥수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.331-336
    • /
    • 2004
  • This study focuses on the hardware implementation of fast and low-system-complexity multiplier over GF(2$^{m}$ ). From the properties of an irreducible AOP of degree m. the modular reduction in GF(2$^{m}$ ) multiplicative operation can be simplified using cyclic shift operation. And then, GF(2$^{m}$ ) multiplicative operation can be established using the away structure of AND and XOR gates. The proposed multiplier is composed of m(m+1) 2-input AND gates and (m+1)$^2$ 2-input XOR gates. And the minimum critical path delay is Τ$_{A+}$〔lo $g_2$$^{m}$ 〕Τ$_{x}$ proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.n.

Modular Multiplier based on Cellular Automata Over $GF(2^m)$ (셀룰라 오토마타를 이용한 $GF(2^m)$ 상의 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.112-117
    • /
    • 2004
  • In this paper, we propose a suitable multiplication architecture for cellular automata in a finite field $GF(2^m)$. Proposed least significant bit first multiplier is based on irreducible all one Polynomial, and has a latency of (m+1) and a critical path of $ 1-D_{AND}+1-D{XOR}$.Specially it is efficient for implementing VLSI architecture and has potential for use as a basic architecture for division, exponentiation and inverses since it is a parallel structure with regularity and modularity. Moreover our architecture can be used as a basic architecture for well-known public-key information service in $GF(2^m)$ such as Diffie-Hellman key exchange protocol, Digital Signature Algorithm and ElGamal cryptosystem.

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m) (유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

$AB^2$ Semi-systolic Architecture over GF$GF(2^m)$ ($GF(2^m)$상에서 $AB^2$ 연산을 위한 세미시스톨릭 구조)

  • 이형목;전준철;유기영;김현성
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • In this contributions, we propose a new MSB(most significant bit) algorithm based on AOP(All One Polynomial) and two parallel semi-systolic architectures to computes $AB^2$over finite field $GF(2^m)$. The proposed architectures are based on standard basis and use the property of irreducible AOP(All One Polynomial) which is all coefficients of 1. The proposed parallel semi-systolic architecture(PSM) has the critical path of $D_{AND2^+}D_{XOR2}$ per cell and the latency of m+1. The modified parallel semi-systolic architecture(WPSM) has the critical path of $D_{XOR2}$ per cell and has the same latency with PSM. The proposed two architectures, PSM and MPSM, have a low latency and a small hardware complexity compared to the previous architectures. They can be used as a basic architecture for exponentiation, division, and inversion. Since the proposed architectures have regularity, modularity and concurrency, they are suitable for VLSI implementation. They can be used as a basic architecture for algorithms, such as the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm(DSA), and the ElGamal encryption scheme which are needed exponentiation operation. The application of the algorithms can be used cryptosystem implementation based on elliptic curve.

Low System Complexity Bit-Parallel Architecture for Computing $AB^2+C$ in a Class of Finite Fields $GF(2^m)$ (시스템 복잡도를 개선한 $GF(2^m)$ 상의 병렬 $AB^2+C$ 연산기 설계)

  • 변기령;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.24-30
    • /
    • 2003
  • This study focuses on the arithmetical methodology and hardware implementation of low system-complexity A $B^2$+C operator over GF(2$^{m}$ ) using the irreducible AOP of degree m. The proposed parallel-in parallel-out operator is composed of CS, PP, and MS modules, each can be established using the array structure of AND and XOR gates. The proposed multiplier is composed of (m+1)$^2$ 2-input AND gates and (m+1)(m+2) 2-input XOR gates. And the minimum propagation delay is $T_{A}$ +(1+$\ulcorner$lo $g_2$$^{m}$ $\lrcorner$) $T_{x}$ . Comparison result of the related A $B^2$+C operators of GF(2$^{m}$ ) are shown by table, It reveals that our operator involve more lower circuit complexity and shorter propagation delay then the others. Moreover, the interconnections of the out operators is very simple, regular, and therefore well-suited for VLSI implementation.