• Title/Summary/Keyword: Iron-oxide

Search Result 745, Processing Time 0.029 seconds

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing (금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서)

  • Lee, Soo-Min;Kim, Tae-Hyun;Jo, Young-Moo;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

An Experimental Study on the Flowability and Compressive Strength of Color Concrete Mixed with Pigments (안료를 첨가한 칼라콘크리트의 유동성 및 강도에 대한 실험적 연구)

  • Choi, Jae Jin;Hwang, Eui Hwan;Moon, Dae Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.547-553
    • /
    • 2006
  • To know the effect of pigments on the material properties of color concrete, mortar and concrete tests were carried out by the using 5 kinds of pigment. The major component of red, yellow and black pigments was iron oxide and coloring component of blue and green pigments was copper phthalocyanine. Properties of mortar and concrete were some of difference according to adding ratio and kind of pigments. In case of using red, yellow and black pigments, setting time of concrete speeded a little and compressive strength was tendency to increase and slump or air content of concrete was same or decreased. On the other hand, in case of using green and blue pigments, compressive strength of concrete decreased largely because of the excessive air entrainment of surfactant and sump or air content of concrete increased highly. When the antifoaming agent was added to the color concrete mixed with green and blue pigments, compressive strength of concrete was improved and similar to that of concrete without pigment.

Synthesis and Particle Size Control of δ-FeOOH Using H2O2 Oxidizing Agent (H2O2 산화제를 이용한 δ-FeOOH의 합성과 입자 크기 제어)

  • Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.292-296
    • /
    • 2024
  • In this study, Iron (III) oxide-hydroxide (δ-FeOOH) was successfully synthesized using hydrogen peroxide (H2O2) as an oxidizing agent. The synthesis of δ-FeOOH was carried out by controlling the amount of H2O2, and pure δ-FeOOH was successfully synthesized in ranges from 0.2 mL to 0.6 mL of H2O2. The size of the synthesized δ-FeOOH particles was compared by controlling the amount of oxidant H2O2. The average particle size of the synthesized pure δ-FeOOH particles increased from 875.1 nm to 897.2 nm as the amount of H2O2 was increased. The optical properties of δ-FeOOH synthesized under these specific conditions were investigated. All δ-FeOOH showed a similar trend of increasing and decreasing light absorption from 800 nm to 400 nm, although there was a slight difference in the amount of light absorption, with the largest amount of light absorption at 410 nm. The band gap energy of δ-FeOOH through the Tauc plot method was about 2.1~2.2 eV when H2O2 was 0.2~1.4mL. With a sufficient small particle size, simple control of that particle size, and a small band gap energy enough to absorb light in the visible spectrum, δ-FeOOH could be useful in a variety of applications, including photoelectrochemistry and battery electrodes.

Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats

  • Nan Zhang;Li Xu;Hao Song;Chunqing Bu;Jie Kang;Chuanchen Zhang;Xiaofei Yang;Fabin Han
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • Background and Objectives: Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects. Methods and Results: We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 ㎍ Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process. Conclusions: SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.

The Effects of Various Vegatable Pesticides on Materials of Cultural Property - Dyed and Undyed Silk Fabrics, Cotton Fabrics and Korean Papers, Undyed Ramie Fabric, Pigments, Painted Plates - (식물에서 추출한 살충.살균제가 문화재 재질에 미치는 영향 - 견직물, 면직물, 저마직물, 한지, 안료분말, 채색편 -)

  • Oh, Joon-Suk
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.9-22
    • /
    • 2007
  • Three kinds of natural pesticides extracted from plants which are being sold in the Korean markets, were estimated effects on materials of art of museum. Tested samples were 1) silk fabrics : undyed, dyed(amur cork tree, gallut, gallut(alum post mordancy), gallut(copperas post mordancy), gardenia, turmeric, acorn, acorn(copperas post mordancy), gromwell, madder, madder(alum post mordancy), safflower, sappanwood, sappanwood(alum pre mordancy, post mordancy), indigo, indigo+amur cork tree, indigo+sappanwood) 2) cotton fabrics : undyed, dyed(amur cork tree, gallut, gallut(alum post mordancy), gardenia, acorn, acorn(copperas post mordancy), gromwell, madder, madder(alum post mordancy), safflower, sappanwood, sappanwood(alum pre mordancy, post mordancy), indigo, indigo+sappanwood) 3) undyed ramie fabric 4) Korean papers : undyed, dyed(sappanwood, indigo, gardenia, amur cork tree, safflower) 5) pigments : azurite, malachite, red lead, litharge, orpiment, hematite, iron oxide, cinnabar, vermilion, indigo, lake indigo, kaolin, lead white, oyster shell white 6) painted plates : azurite, malachite, red lead, litharge, orpiment, hematite, iron oxide, cinnabar, vermilion, indigo, lake indigo, kaolin, lead white, oyster shell white. Conditions of tests were that after samples were exposed to 10 times of promoted concentration for 9 months in relative humidity $55{\pm}1%$ and temperature $20{\pm}2^{\circ}C$, they were compared with standards. Items of estimation were color difference(${\Delta}E^*$) and tenacity. After exposure to pesticides, undyed silk cotton ramie fabrics and Korean papers were not nearly changed in their colors, but colors of most of dyed samples were clearly changed by pesticides except for partial samples(acorn- and madder-dyed fabrics etc, gardenia-dyed samples). Especially changes of colors of turmeric-dyed silk fabrics were most distinct. And colors of pigments and painted plates containing lead, copper, arsenic, mercury and vegetable pigments, were clearly changed. Tenacities of yams of undyed silk fabrics were not nearly changed and undyed cotton fabrics were a little reduced as compared with standards. But tenacities of yams of dyed silk and cotton fabrics were clearly reduced or increased as compared with standards. Especially, madder-dyed silk fabrics were increased 10% or more and indigo-dyed silk fabrics were reduced 10% or less in all pesticides. Also madder- and sappanwood(alum post mordancy)-dyed cotton fabrics were increased 10% or more in all pesticides.

  • PDF

Ferucarbotran-Enhanced Hepatic MRI at 3T Unit: Quantitative and Qualitative Comparison of Fast Breath-hold Imaging Sequences (간의 3T 자기공명영상에서 초상자성산화철 조영증강 급속호흡정지영상기법들간의 양적 및 질적 비교평가)

  • Cho, Kyung-Eun;Yu, Jeong-Sik;Chung, Jae-Joon;Kim, Joo-Hee;Kim, Ki-Whang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • Purpose : To compare the relative values of various fast breath-hold imaging sequences for superparamagnetic iron-oxide (SPIO)-enhanced hepatic MRI for the assessment of solid focal lesions with a 3T MRI unit. Materials and Methods : 102 consecutive patients with one or more solid malignant hepatic lesions were evaluated by spoiled gradient echo (GRE) sequences with three different echo times (2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10]) for $T2^*$-weighted imaging in addition to T2-weighted turbo spin echo (TSE) sequence following intravenous SPIO injection. Image qualities of the hepatic contour, vascular landmarks and artifacts were rated by two independent readers using a four-point scale. For quantitative analysis, contrast-to-noise ratio (CNR) was measured in 170 solid focal lesions larger than 1 cm (107 hepatocellular carcinomas, nine cholangiocarcinomas and 54 metastases). Results : GRE_5.8 showed the highest mean points for hepatic contour, vascular anatomy and imaging artifact presence among all of the subjected sequences (p<0.001) and was comparable (p=0.414) with GRE_10 with regard to lesion conspicuity. The mean CNRs were significantly higher (p<0.001) in the following order: GRE_10 ($24.4{\pm}14.5$), GRE_5.8 ($14.8{\pm}9.4$), TSE ($9.7{\pm}6.3$), and GRE_2.4 ($7.9{\pm}6.4$). The mean CNRs of CCCs and metastases were higher than those of HCCs for all imaging sequences (p<0.05). Conclusion : Regarding overall performances, GRE using a moderate echo time of 5.8 msec can provide the most reliable data among the various fast breath-hold SPIO-enhanced hepatic MRI sequences at 3T unit despite the lower CNR of GRE_5.8 compared to that of GRE_10.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.