• 제목/요약/키워드: Iron electrode

검색결과 93건 처리시간 0.022초

나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정 (Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate)

  • 민동준;김철용;안준영;조수빈;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Iron(II) Tris(3-bromo-1,10-phenanthroline) Complex: Synthesis, Crystal Structure and Electropolymerization

  • Lee, Kyeong-Jong;Yoon, Il;Lee, Shim-Sung;Lee, Bu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.399-403
    • /
    • 2002
  • The complex of iron(II) tris(3-Br-phen) (3-Br-phen; 3-bromo-1,10-phenanthroline) was prepared as a precursor of electropolymerization and the crystal structure of [Fe(3-Br-phen)3]($PF_6$)2${\cdot}$CH3CN with a distorted octahedral geometry has been investigated. The reductive electropolymerization of $>[Fe(3-Br-phen)3]^{2+}$ complex onto the surface of a glassy carbon electrode and indium tin oxide (ITO) optically transparent electrode were performed in acetonitrile at room temperature. Thin film of poly-$>[Fe(3-Br-phen)3]^{2+}$ formed was adherent, electroactive and stably deposited on a glassy carbon disk electrode. The thin metallopolymeric film formed was also confirmed by absorption spectroscopy.

고분자전해질 연료전지에서 고분자 막과 전극의 철 이온 오염 및 산 세척 효과 (Iron Ion Contamination and Acid Washing Effect of Polymer Membrane and Electrode in Polymer Electrolyte Fuel Cell)

  • 유동근;박민정;오소형;박권필
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.20-24
    • /
    • 2022
  • 고분자전해질연료전지 (PEMFC) 장기사용과정에서스택요소의부식및공급가스의오염에의해막전극합체 (MEA)의 화학적 열화가 발생한다. 본 연구에서는 화학적으로 열화된 MEA를 산 세척해서 성능을 회복시킬 수 있는지 연구하였다. 철 이온을 오염시키고 황산 수용액으로 세척하여 PEMFC 셀에서 성능을 측정해 비교했다. 0.5 ppm의 철 이온 오염에 의해 약 25%의 성능 감소가 있었고 0.15 M 황산 세척에 의해 97.1% 성능회복이 가능했다. 고분자 막의 철 이온 오염에 의해 막 저항이 증가했고, 저농도 황산 수용액 세척에 의해 전극 촉매의 손실을 최소화하면서 막에서 철 이온을 세척함으로써 이온전도도가 회복되었다. PEMFC MEA의 화학적 오염에 의한 내구성 감소를 산 세척에 의해 해결할 수 있는 가능성을 확인하였다.

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

  • Khosa, Muhammad Kaleem;Jamal, Muhammad Asghar;Hussain, Amira;Muneer, Majid;Zia, Khalid Mahmood;Hafeez, Samia
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.316-321
    • /
    • 2013
  • Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickle (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electro-coagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

시차펄스전압전류법에서 도데실황산나트륨이 수식된 유리탄소전극에 의한 선택성 있는 철(III) 이온의 정량 (Differential Pulse Voltammetric Determination of Iron(III) Ion with a Sodium Dodecyl Sulfate Modified Glassy Carbon Electrode)

  • 고영춘;김진아;정근호
    • 분석과학
    • /
    • 제10권6호
    • /
    • pp.427-432
    • /
    • 1997
  • 도데실황산나트륨(SDS)이 수식된 유리탄소전극에 의해 철(III) 이온의 정량분석이 선택성 있게 제안되었다. 이것은 SDS와 $Fe^{3+}$의 정전기적 인력으로 착물이 형성되는 데 근거한 것이다. 철(III) 이온의 정량분석은 시차펄스전압전류법(DPV)에 의해 하였고, 그 정량분석을 위한 $(DS^-)_n-Fe^{3+}$의 환원 피크는 +0.466(${\pm}0.002$)volt (vs. Ag/AgCl)였다. 철(III) 이온의 정랑분석을 위한 검량선은 $0.50{\times}10^{-5}{\sim}10{\times}10^{-5}mol/L$의 농도 범위에서 얻었으며, 검출한계는 $0.14{\times}10^{-5}mol/L$였다. $Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$, $Zn^{2+}$$Mn^{2+}$는 철(III) 이온의 정량에 거의 영향을 미치지 않으나, $CN^- $$SCN^-$은 철(III) 이온의 정량을 크게 방해하였다.

  • PDF

직류전원과 0가 철을 이용한 지하수내 TCE정화효율의 최적화 연구 (Optimal Remediation of TCE-contaminated Groundwater using Direct Current and Fe$^0$)

  • 문지원;문희수;노열;김헌기;송윤구
    • 자원환경지질
    • /
    • 제35권3호
    • /
    • pp.229-239
    • /
    • 2002
  • 본 연구는 직류전원(DC)과 zero valent iron(ZVI)을 이용한 실험실 규모의 투수성 반응벽의 모사를 통하여 야외규모의 반응벽 설치시 반응벽과 전원의 설치 위치에 따른 trichloroethylene(TCE)의 처리시 효율성과 반응벽 사용가능 수명을 알아보고자 하였다. 실험결과 12개의 컬럼 type 중 ZVI와 DC를 동시에 사용하는 경우, ZVI만을 사용하는 경우의다. TCE의 환원적 탈염소화는 촉진되었다. 설치된 ZVI충진물질의 양을 고려할 경우, 하류에 ZVI를 설치하고, 전극배열은 상류에 양극을, 하류에 음극을 배열하는 것이 가장 적은 실비로 높은 처리 효율을 나타냄이 밝혀졌다.

리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구 (Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries)

  • 유호석;김인수
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

주철의 냉간 시공 교류아크용접에서 예열효과에 관한 연구 (A Study on the Effect of Preheating in Cold AC Arc Welding Process of the Cast Iron)

  • 김진경;김영식;유대원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.729-735
    • /
    • 2007
  • AC cold arc welding process with AWS E Ni-CI and NiFe-CI is sometimes used to repair damaged cast iron parts in diesel engine room. But if some difference in hardness on welding zones, repaired parts would be cracked in a short. To overcome this default. this study is performed on varying preheating temperature of welding parts, selecting welding rod etc. Experimental results showed that difference in hardness on welding zones at $200^{\circ}C$ was less than $100^{\circ}C$ and less low current than high current. From this study we could conclude that repair welding at $200^{\circ}C$ preheating and low current as possible as welding in damaged cast iron parts was a little difference in hardness on welding zones.