DOI QR코드

DOI QR Code

Iron(II) Tris(3-bromo-1,10-phenanthroline) Complex: Synthesis, Crystal Structure and Electropolymerization


Abstract

The complex of iron(II) tris(3-Br-phen) (3-Br-phen; 3-bromo-1,10-phenanthroline) was prepared as a precursor of electropolymerization and the crystal structure of [Fe(3-Br-phen)3]($PF_6$)2${\cdot}$CH3CN with a distorted octahedral geometry has been investigated. The reductive electropolymerization of $>[Fe(3-Br-phen)3]^{2+}$ complex onto the surface of a glassy carbon electrode and indium tin oxide (ITO) optically transparent electrode were performed in acetonitrile at room temperature. Thin film of poly-$>[Fe(3-Br-phen)3]^{2+}$ formed was adherent, electroactive and stably deposited on a glassy carbon disk electrode. The thin metallopolymeric film formed was also confirmed by absorption spectroscopy.

Keywords

References

  1. Murray, R. W. In Molecular Design of Electrode Surfaces:Techniques of Chemistry Series; Murray, R. W., Ed.; Wiley: NewYork, 1992; Vol. 22, p 1.
  2. Merz, A. In Topics in Current Chemistry: Electrochemistry IV,Steckhan, E., Ed.; Springer-Verlag: Berlin, 1990; Vol. 152, p 49. https://doi.org/10.1007/BFb0034364
  3. Heinze, J. In Topics in Current Chemistry: ElectrochemistryIV, Steckhan, E., Ed.; Springer-Verlag: Berlin, 1990; Vol. 152, p 1. https://doi.org/10.1007/BFb0034363
  4. Josowicz, M.; Janata, J. In Electroactive Polymers, Scrosati, B. Ed.; Chapman and Hall: New York, 1993; p 310.
  5. Bedioui, F.; Devneck, J.; Bied-Charreton, C. Acc. Chem. Res.1995, 28, 30. https://doi.org/10.1021/ar00049a005
  6. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85. https://doi.org/10.1016/0010-8545(88)80032-8
  7. Andrieux, C. P.; Saveant, J. M. In Molecular Design of Electrode Surfaces: Techniques of Chemistry Series; Murray, R. W., Ed.; Wiley: New York, 1992, Vol. 22, p 207.
  8. Lyons, M. E. G. Electroactive Polymer Electrochemistry, 2nd Ed.; Plenum Press: New York, 1994; part 1 and references therein.
  9. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamental and Applications; VCH: Weinheim, 1995.
  10. Abruna, H. D.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 6898. https://doi.org/10.1021/ja00413a021
  11. Moss, J. A.; Stipkala, J. M.; Yang, J. C.; Bignozzi, C. A.;Meyer, G. J.; Meyer, T. J.; Wen, X.; Lincton, R. W. Chem. Mater.1998, 10, 1748. https://doi.org/10.1021/cm980283i
  12. Girotto, E. M.; Gazotti, W. A.; De Paoli, M. A.J. Phys. Chem. B 2000, 104, 6124. https://doi.org/10.1021/jp994440s
  13. Abruna, H. D.; Denisevich, P.; Umana, M.; Meyer, T. J.; Murray,R. W. J. Am. Chem. Soc. 1981, 103, 1. https://doi.org/10.1021/ja00391a001
  14. Denisevich, P.; Abruna, H. D.; Leidner, C. R.; Meyer, T. J.;Murray, R. W. Inorg. Chem. 1982, 21, 2153. https://doi.org/10.1021/ic00136a006
  15. Deronzier, A.; Moutet, J. C. Coord. Chem. Rev. 1996, 147, 339. https://doi.org/10.1016/0010-8545(95)01130-7
  16. Wang, J.; Keene, F. R. J. Electroanal. Chem. 1996, 405, 71. https://doi.org/10.1016/0022-0728(95)04417-5
  17. Belanger, S.; Stevenson, K. J.; Mudakha, S. A.; Hupp, J. T.Langmuir 1999, 15, 837. https://doi.org/10.1021/la980908r
  18. Gould, S.; OToole, T. R.; Meyer, T. J. J. Am. Chem. Soc. 1990,112, 9490. https://doi.org/10.1021/ja00182a007
  19. Connors, P. J., Jr.; Tzalis, D.; Dunnick, A. L.; Tor, Y. Inorg. Chem.1998, 37, 1121. https://doi.org/10.1021/ic970911i
  20. Siemens, SMART and SAINT: Area Detector Control and Integration Software Ver. 4.0; Siemens Analytical X-ray Instruments: Madison, Wisconsin, 1996.
  21. Siemens, SHELXTL: Structure Determination Programs Ver. 5.03;Siemens Analytical X-ray Instruments: Madison, Wisconsin, 1996.
  22. Zalkin, A.; Templeton, D. H.; Ueki, T. Inorg. Chem. 1973, 12,1641. https://doi.org/10.1021/ic50125a033
  23. Fussa-Rydel, O.; Zhang, H. T.; Hupp, J. T.; Leidner, C. R. Inorg.Chem. 1989, 28, 1533. https://doi.org/10.1021/ic00307a022
  24. Gould, S.; Strouse, G. F.; Meyer, T. J.; Sullivan, B. P. Inorg.Chem. 1991, 30, 2942. https://doi.org/10.1021/ic00014a022
  25. Nguyen, F.; Anson, F. C. Electrochim. Acta 1998, 44, 239. https://doi.org/10.1016/S0013-4686(98)00111-X
  26. Redepenning, J.; Anson, F. C. J. Phys. Chem. 1987, 91, 4549. https://doi.org/10.1021/j100301a025
  27. Tzalis, D.; Tor, Y. Tetrahedron Lett. 1995, 36, 6017. https://doi.org/10.1016/0040-4039(95)01190-S

Cited by

  1. Quantum-Chemical Study of 1,2-Bis(dimethylethyleneguanidino)benzenes vol.71, pp.12, 2007, https://doi.org/10.3987/COM-07-11143
  2. Supramolecular frameworks composed of copper(II), zinc(II), and ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different molar ratios of metal and ligand vol.22, pp.1, 2011, https://doi.org/10.1007/s11224-010-9702-y
  3. Spectral, Structural, and Computational Studies of a New Family of Ruthenium(II) Complexes Containing Substituted 1,10-Phenanthroline Ligands and in situ Electropolymerization of a Phenanthrolineruthenium(II) Complex Bridging Nanogap Gold Electrodes vol.2009, pp.10, 2009, https://doi.org/10.1002/ejic.200801131
  4. Infrared studies of lead(II) halide-1,10-phenanthroline photosensitive materials vol.71, pp.5, 2002, https://doi.org/10.1016/j.saa.2008.07.012
  5. Studies on one 2D cadmium(II) coordination polymer and two mononuclear cadmium(II) complexes with trans or cis configuration having 3-bromo, 3,6-dibromo, and 3,8-dibromo 1,10-phenanthroline ligands vol.920, pp.1, 2009, https://doi.org/10.1016/j.molstruc.2008.11.011