• Title/Summary/Keyword: Ionomer dispersion

Search Result 15, Processing Time 0.025 seconds

Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri;Lee, Jung-Min;Lee, Seung-Mo;Kim, Jung-Hyun;Subramani, Sankaraiah
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.842-849
    • /
    • 2009
  • Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC (프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구)

  • Woo, Seunghee;Yang, Tae-Hyun;Park, Seok-Hee;Yim, Sung-Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.512-518
    • /
    • 2019
  • To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.

Molecular Interactions of Soaked Nonionic Dye in Ionomer Films (아이오노머 필름에 흡수된 비이온계 염료의 분자간 상호작용에 관한 연구)

  • ;;;;;;Forrest A. Landis;Robert B. Moore
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.671-678
    • /
    • 2001
  • Sodium and zinc salts of poly(ethyaene-co-methacrylic acid) ionomers consist of three phases, i.e. ionic aggregates, amorphous, and crystalline phases. Dye molecules after soaked from the methanol solution are located near the amorphous phase or ionic aggregates within ionomer films. Depending on the location of the molecules in the ionomer film, they are under influence of dispersion forces (ethylene parts), polar forces (acid parts). and ionic dipole (ionic aggregates) interactions. The UV/Vis absorption peak of Nile Red under the dispersion force is found at near 500 nm, for the dye under the polar force effect 525 nm, and 550 and 610 nm for the dyes under $Na^+$ and $Zn^{2+}$ ionization effects, respectively. Since the divalent $Zn^{2+}$ ion has larger ionic dipole than the monovalent $Na^+$ ion, the larger red-shift of the absorption band due to the ionic dipole interaction is observed for $Zn^{2+}$ counter ion.

  • PDF

Urea Diffusional Characteristics of Film from Dispersion Based on Poly(ethylene-co-acrylic acid) (Poly(ethylene-co-acrylic acid)의 분산입자 제조와 그 필름의 요소 투과특성)

  • Yu, Dong-Guk;An, Jeong-Ho
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • Dispersions are prepared from poly(ethylene-co-acrylic acid) (PEAA) ionomer with two different counter-ions, ammonium and sodium. The diffusional characteristic of urea aqueous solution are measured for the films prepared from the above mentioned dispersions. It is attempted to find the relationship between diffusional behavior and various chemical and physical characteristics of films. DSC is employed to characterize glass transition temperature and degree of crystallinity and the structural features of crystal phase and ionic clusters are examined by WAXD and FTIR. The diffusional characteristics of ionomer is found to be dependent on various parameters such as the size of initial dispersion as well as the kind of counter ion and the degree of neutralization.

  • PDF

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells (고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발)

  • Shin, Mun-Sik;Kim, Do-Hyeong;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.

Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays (유기클레이의 선택적 분산에 의한 폴리프로필렌/아이오노머/클레이 나노복합체의 유변학 및 형태학적 특성 연구)

  • Kim, Doohyun;Ock, Hyun Geun;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2015
  • In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1~10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene-ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

Preparation and Properties of Water-borne PU Having Ionic Center onto Flexible Side Chain (유연한 곁가지 말단에 이온성 작용기를 가지는 양이온성 수분산 PU의 제조와 물성)

  • Kim, Dong-Min;Bang, Moon-Soo;Kim, Hyung-Joong
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • Three isocyanate groups of IP-$75^{(R)}$ and one hydroxyl group of various amino alcohols were applied for preparing cationic type water-borne polyurthane (PU) having ionic center onto flexible side chains. Average particle size, dispersion stability, viscosity, contact angle, surface energy, glass transition temperature ($T_g$), and adhesion strength of prepared water-borne PUs were measured and analyzed with different NCO/OH mol ratios, ionomers, and neutralizing agents. It was characterized that the prepared PU has a smaller particle size and a better dispersion stability than the conventional cationic water-borne PU containing ionic centers onto main chains.

  • PDF

Effect of Soft Segment Length on the Dispersion and Physical Properties of Polyurethane Ionomer (Soft Segment 길이가 Polyurethane Ionomer의 분산특성 및 물리적 특성에 미치는 영향)

  • Kim, Byung Kyu
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.60-66
    • /
    • 1993
  • Aqueous polyurethane(PU) anionomer dispersions were prepared from isophorone diisocyanate (IPDI), polytetramethylene adipate glycol(PTAd) and dimethylol propionic acid(DMPA) as potential anionic centers. The effects of polyol molecular weight(Mn) on the state of dispersion, thermal, mechanical, and viscoelastic properties and swelling of emulsion cast film were determined. With increasing Mn of PTAd, particle size of emulsion and soft segment T$_{g}$ decreased, and solvent swell, emulsion viscosity, and hard segment $T_{g}$ increased. Tensile strength showed minimum with PTAd 1000, and elongation at break generally increased with the Mn of PTAd. These results were possibly nterpreted in terms of soft segment-hard segment phase separation and crystallization of high molecular weight PTAd.

  • PDF

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

Emulsion Blends of Polyurethane Ionomers from Ester and Ether Type Polyols (Ester 및 Ether형 Polyurethane Ionomer의 Emulsion 블랜드)

  • Kim, Sang-June;Kim, Byung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.614-619
    • /
    • 1992
  • Two types of polyurethane(PU) ionomer dispersion having different type of soft segment, viz. Poly (tetramethylene adipate) glycol(PTAd), and polypropylene glycol(PPG) were emulsion blended. Viscosity of emulsion blend, mechanical, and surface properties of the emulsion cast films were determined as a function of blend composition. Mechanical properties showed a large scatter of data or negative deviation from the additivity rule, and this was attributed to the incompatibility of soft segments. Contact angle measurement indicated that air facing surface of emulsion cast film contained more of PPG PU, due probably to its smaller particle diameter compared to PTAd PU.

  • PDF