DOI QR코드

DOI QR Code

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells

고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발

  • Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Kim, Do-Hyeong (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 신문식 (상명대학교 공과대학 환경공학과) ;
  • 김도형 (상명대학교 공과대학 환경공학과) ;
  • 강문성 (상명대학교 공과대학 환경공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2016.08.14
  • Accepted : 2016.08.25
  • Published : 2016.08.31

Abstract

In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.

본 연구에서는 고체알칼리 연료전지용 이오노머 바인더 용액 제조를 위하여 poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)를 동결 분쇄하고 4급 암모늄화 반응을 진행하여 음이온 전도성 이오노머(quaternized PPO, QPPO) 용액을 제조하였다. QPPO 이오노머 바인더 용액의 종류를 고분자의 분쇄 시간을 통하여 제조하였고, 이에 따른 분산도, 입자의 크기 및 전기화학적 성능 등을 분석하였다. 이를 통해 기존의 비 분쇄 고분자를 활용하여 제조한 이오노머 바인더 용액보다 분쇄 고분자를 활용한 이오노머 바인더 용액이 높은 고분자 분산도와 낮은 입자 크기를 확보하였다. 제조한 이오노머 바인더 용액(BPPO-G120s)의 최대 이온전도도는 $0.025S\;cm^{-1}$이었으며, 이온교환용량은 $1.26meq\;g^{-1}$을 보였다.

Keywords

References

  1. G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, 'Polymeric materials as anion-exchange membranes for alkaline fuel cells', Prog. Polym. Sci., 36, 1521 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  2. M.A. Hickner, A.M. Herring, E.B. Coughlin, 'Anion exchange membranes: Current status and moving forward', J. Polym. Sci. Pol. Phys., 51, 1727 (2013). https://doi.org/10.1002/polb.23395
  3. S. Maurya, S.-H. Shin, Y. Kim, S.-H. Moon, A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries, RSC Adv., 5, 37206 (2015). https://doi.org/10.1039/C5RA04741B
  4. J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, 'Anion-exchange membranes in electrochemical energy systems', Energ. Environ. Sci., 7, 3135 (2014). https://doi.org/10.1039/C4EE01303D
  5. H. Zhang, P.K. Shen, 'Recent development of polymer electrolyte membranes for fuel cells', Chem. Rev., 1, 122780 (2012).
  6. B.C. Bae, E.Y. KIM, S.J. Lee, H.J. Lee, 'Research trends of anion exchange membranes within alkaline fuel cell', New. Renew. Ener., 11, 53 (2015).
  7. H.J. Lee, Y.W. Choi, T-.H. Yang, B.C. Bae, 'Hydrocarbon composite membranes with improved oxidative stability for PEMFC', J. Korean Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44
  8. M. Tomoi, K. Yamaguchi, R. Ando, Y. Kantake, Y. Aosaki, H. Kubota, 'Synthesis and thermal stability of novel anion exchange resins with spacer chains', J. Appl. Polym. Sci., 64, 1161 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z
  9. D. Henkensmeier, H.-R. Cho, H.-J. Kim, C. Nunes Kirchner, J. Leppin, A. Dyck, J.H. Jang, E. Cho, S.-W. Nam, T.-H. Lim, 'Polybenzimidazolium hydroxides - Structure, stability and degradation', Polym. Degrad. Stabil., 97, 264 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.12.024
  10. J. Yan, M.A. Hickner, 'Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s', Macromolecules, 43, 2349 (2010). https://doi.org/10.1021/ma902430y
  11. J.S. Park, G.G. Park, S.H. Park, Y.G. Yoon, C.S. Kim, W.Y. Lee, 'Development of solid?state alkaline electrolytes for solid alkaline fuel cells', Macromol. Symp., 249-250, 174 (2007) .
  12. M.R. Hibbs, 'Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations', J. Polym. Sci. B Polym. Phys., 51, 1736 (2013). https://doi.org/10.1002/polb.23149
  13. M.R. Hibbs, C.H. Fujimoto, C.J. Cornelius, 'Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells', Macromolecules, 42, 8316 (2009). https://doi.org/10.1021/ma901538c
  14. Y. Wu, C. Wu, J.R. Varcoe, S.D. Poynton, T. Xu, Y. Fu, 'Novel silica/poly (2, 6-dimethyl-1, 4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: effect of silica content and the single cell performance', J. Power Sources, 195, 3069 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.118
  15. M.-S. Shin, Y.-J. Byun, Y.-W. Choi, M.-S. Kang, J.-S. Park, 'On-site crosslinked quaternized poly (vinyl alcohol) as ionomer binder for solid alkaline fuel cells', Int. J. Hydrogen. Energ., 39, 16556 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.181
  16. M.-S. Shin, M.-S. Kang, J.-S. Park, 'Development of anion-conducting ionomer binder solutions for electrodes of solid alkaline fuel Cells', J. Nanosci. Nanotechno., 14, 7793 (2014). https://doi.org/10.1166/jnn.2014.9462
  17. T. Xu, 'Ion exchange membranes: state of their development and perspective', J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  18. D.-H. Kim, M.-S. Kang, 'Improvement of capacitive deionization performance by coating quaternized poly(phenylene oxide)', Membrane Journal, 24, 322 (2014).
  19. H.-S. Park, D.-H. Kim, J.S. Park, S.-H. Moon, Y.K. Lee, K.-H. Yeon, M.-S. Kang, 'Surface modification and use of polymer complex agents to mitigate metal crossover of anion-exchange membranes', J. Colloid. Interf. Sci., 430, 24 (2014). https://doi.org/10.1016/j.jcis.2014.05.024
  20. Y. Tanaka, "Ion exchange membranes: fundamentals and application", Elsevier, Amsterdam (2007).
  21. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, 'Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)', J. Membr. Sci., 207, 157 (2002). https://doi.org/10.1016/S0376-7388(02)00172-2
  22. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, 'Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance', J. Membr. Sci., 447, 80 (2013). https://doi.org/10.1016/j.memsci.2013.07.017
  23. K-.J. Cho, J.-S. Park, 'Prediction of life time of ion-exchange membranes in vanadium redox flow battery', J. Korean Electrochem. Soc., 19, 14 (2016). https://doi.org/10.5229/JKES.2016.19.1.14
  24. J.-S. Park, M.-S. Shin, S.S. Sekhon, Y.-W. Choi, T.-H. Yang, 'Effect of annealing of Nafion recast membranes containing ionic liquids', J. Korean Electrochem. Soc., 14, 9 (2011). https://doi.org/10.5229/JKES.2011.14.1.009
  25. L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, M.R. Wiesner, 'Recent advances in proton exchange membranes for fuel cell applications', Chem. Eng. J., 204, 87 (2012).
  26. J.-S. Park, S.-H. Park, S.-D. Yim, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, 'Performance of solid alkaline fuel cells employing anion-exchange membranes', J. Power Sources, 178, 620 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.043
  27. K-.J. Cho, J.-S. Park, 'Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery', J. Korean Electrochem. Soc., 19, 21 (2016). https://doi.org/10.5229/JKES.2016.19.1.21