• Title/Summary/Keyword: Ionic diffusion

Search Result 132, Processing Time 0.023 seconds

A Study on Natural Dyeing (5) - Adsorption Properties of Berberine for Silk Fabrics - (천연염색에 관한 연구(5) -황벽색소 베르베린의 견에 대한 염착특성 -)

  • 박수민;김혜인
    • Textile Coloration and Finishing
    • /
    • v.14 no.2
    • /
    • pp.9-17
    • /
    • 2002
  • The interaction between berberine and tannin in aqueous solution was investigated spectrophotometerically. The dyeing mechanism of silk fabrics (control and tannin treated silk fabrics) with berberine was based on thermodynamic parameters obtained from equilibrium adsorption experiments. In adsorption spectra of aqueous solution of berberine and tannin mixture two isosbestic points (328nm, 357nm) were found and the mole fraction of reaction of components was 1:1. Initial dyeing rates were increased and the diffusion of dye was more effective by tannin treatment. Without regard to tannin treatment the adsorption isotherm of berberine was the langmuir type except high temperature, $80^\circ{C}$. By tannin treatment the saturation dye uptake was increased, the increase of dye uptake appeared to be a result of entropy change rather than enthalpy change. All these results can be interpreted by the hydrophobic interaction between berberine and silk treated with tannin and it is reasonable to conclude that not only the ionic force, but also the hydrophobic interaction contributes to the binding of berberine and tannin treated silk treated with tannin.

Reversible Excited-State Proton Transfer: Effect of the Switching of Interaction Potential by Reaction

  • Lee, Jin-uk;Uhm, Je-sik;Lee, Woo-Jin;Lee, Sang-youb;Sung, Jae-young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • In the reaction A + B $^\rightarrow_\leftarrow$ C, where A and B are ionic reactants having opposite charges, a B molecule approaching an A will experience a switching of the interaction potential when the A molecule is captured by one of the other B molecules in the medium. In the reversible case, the former B molecule still has a chance to react with the A, so that one needs to take into account the switched interaction between the reactant B and the product C as well as that between the reactants to treat the kinetics accurately. It is shown that this kind of interaction potential switching affects the relaxation kinetics in an intriguing way as observed in a recent experiment on an excited-state proton transfer reaction.

기능성 레진을 이용한 구조화된 나노 입자의 특성

  • 신진섭;박영준;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.53-53
    • /
    • 2002
  • Alkali-soluble random copolymer (ASR) was used as a functional resin in the emulsion polymerization of styrene to prepare structured nanoparticles. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and conventional ionic emulsifier, sodium dodecyl benzene sulfonate (SDBS). ASR could form aggregates like micelles and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in ASR system was lower than that in SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization.

  • PDF

Effects of CaO on the Ethanol Sensing Characteristics of $LaCoC_3$ ($LaCoC_3$ 산화물의 에탄올 감지특성에 미치는 CaO의 영향)

  • Rim, Byung-O;Shon, Tai-Won;Yang, Chun-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.2
    • /
    • pp.49-53
    • /
    • 1988
  • The perovskite-type compounds $La_{1-x}Ca_xCoO_3$ were synthesized, their thermochemical properties and the gaseous sensitivity were investigated in ethanol vapor. The maximum response for detecting gas corresponded with the exothermic peak of DTA experiment. In any case the substituent was increased, the responsive ratio for detecting gas was grown upon. However, the needed time for response was later, and the operating temperature was elevated. The mechanism of this electrical conductivity was explained by the oxygen ionic diffusion through oxygen vacancy produced by the substituent.

  • PDF

Characterization and Solution Behavior of Polyethylene-based Ionomer Particles in Water (물에서의 폴리에틸렌계 아이오노머 입자 특성과 용액 거동)

  • Yeo, Sang Ihn;Woo, Kyu Whan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.512-518
    • /
    • 1998
  • In this study, various thermodynamic and hydrodynamic parameters characterizing the solution properties of polyethylene ionomer particles in water were determined at $30^{\circ}C$ by means of light scattering and viscosity measurements. Based on the experimental data, we investigated the solution behavior of three kinds of polyethylene ionomers, which are different in composition of the pendant ionic groups of COOK, COOH and $CONH_{2}$, and characterized their particle properties. Ionomers containing 7.6 mol% potassium salt only behave as flexible coils in a relatively good solvent state. On the other hand, two ionomers containing 3.8 mol% amide group together with potassium salt form the compact particles. In addition, the concentration dependence of the effective diffusion coefficient $(D_{eff})$ and the reduced viscosity of the latter ionomers showed the opposite trend from the former, indicating that the composition of the pendant ionic groups have a great influence on the interparticle interaction of ionomers formed in water.

  • PDF

Immobilization of Transglucosidase from Aspergillus niger (Aspergillus niger 유래의 Transglucosidase의 고정화)

  • Ahn, Jang-Woo;Park, Kwan-Wha;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.320-325
    • /
    • 1997
  • Transglucosidase (TG) from Aspergillus niger was immobilized on various carriers by several immobilization methods such as ionic binding, adsorption, entrapment, covalent linkage and metal chelation to improve the process performance. The covalent linkage with CNBr-activated sepharose 4B was found as the best method for immobilization of TG based on the immobilization yield which was 61.3%. The immobilization through ionic binding and adsorption gave 33.1% and 22.5% yield respectively but both methods were not selected due to lower yield than covalent linkage using CNBr-Sepharose 4B. Internal diffusion resistance in beads developed by entrapment were not suitable factor in producing final target products. Covalent linkage of TG on magnesium silicate, silica gel and glass bead and metal chelation method didn't result in higher yield than the selected one, either.

  • PDF

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

Chemical Composition and Features of Asian Dust Observed in Korea (2000~2002) (2000~2002년 우리나라에서 관측된 황사의 화학 조성 및 특성)

  • Shin S.A;Han J.S;Hong Y.D;Ahn J.Y;Moon K.J;Lee S.J;Kim S.D
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.119-129
    • /
    • 2005
  • The ambient TSP data measured at Seoul, Incheon. Taean, Daegu, Busan in Korea were used to explain the chemical composition and general features of Asian Dust (AD) observed in Korea. 9 episodes out of 19 were sampled from 2000 through May 2002, and measurements were conducted covering ionic and metal components with mass concentration. The results showed that daily averaged mass concentration (TSP) during the AD episodes was 458 $\mu\textrm{g}$/㎥, and ionic and metal concentrations were 27.93 $\mu\textrm{g}$/㎥ and 71.7 $\mu\textrm{g}$/㎥, respectively, accounting for 6.1 % and 15.5% of the total aerosol mass. TSP concentrations during episodes were varied from 120 to 1742 $\mu\textrm{g}$/㎥ according to the impact of Asian Dusts and had a tendency of showing higher values at sites in the west side of Korea, which can be explained by the effect of diffusion and deposition. In this study, ionic components like Ca (NO$_3$)$_2$, CaSO$_4$, NaNO$_3$, Na$_2$SO$_4$ were prominent types in secondary aerosol during AD periods and also indicated that V, Co as well as soil elements such as Ca, Fe, Mg, Mn, K correlated well with Al, while Cu, Cd, Pb, Zn didn't agree well with it. In addition, enrichment factors (EFs) for each metal component were obtained to provide simple information about source contribution of Asian Dust, and the results were compared with those from other AD studies. In this study, the results showed that aerosol properties in Korea during the Asian Dust were considerably different from those of general atmospheric condition and specially varied from case to case rather than site to site, which implies that there are certain variations in the soil of source region, pathways of air mass, and meteorological condition. For the enhanced study, those factors should be combined with the features of Asian Dust resolved from this study.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF