Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.5.593

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell  

Hwang, Byungchan (Sunchon National University)
Chung, Hoi-Bum (Sunchon National University)
Lee, Moo-Seok (Kolon Research Institute)
Lee, Dong-Hoon (Kolon Research Institute)
Park, Kwonpil (Sunchon National University)
Publication Information
Korean Chemical Engineering Research / v.54, no.5, 2016 , pp. 593-597 More about this Journal
Abstract
The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.
Keywords
PEMFC; Membrane; Ion conductivity; Water flux; Simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011).   DOI
2 Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
3 Karpenko-Jereb, L., Innerwinkler, P., Kelterer, A.M., Sternig, C., Fink, C., Prenninger, P. and Tatschl, R., "A Novel Membrane Transport Model for Polymer Electrolyte Fuel Cell Simulations," Inter. J. of Hydrogen Energy, 39, 7077-7088(2014).   DOI
4 Hsu, W. Y. and Gierke, T. D., "Ion Transport and Clustering in Nafion Perfluorinated Membranes," J. Membr. Sci., 13, 307-326 (1983).   DOI
5 Fimrite, J., Struchtrup, H. and Djilali, N., "Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework," J. Electrochem Soc., 152, A, 1804-1814(2005).   DOI
6 Cwirko, E. H. and Carbonell, R. G., "JA Theoretical Analysis of Donnan Dialysis Across Charged Porous Membranes," J. Membr. Sci., 48, 155-179(1990).   DOI
7 Zabolotsky, V. I. and Nikonenko, V. V., "Effect of Structural Membrane Inhomogeneity on Transport Properties," J. Membr. Sci., 79 181-198(1993).   DOI
8 Berezina, N. P. and Karpenko, L.V., "Percolation Effects in Ion Exchange Materials," Colloid J., 62, 676-684(2000).   DOI
9 Carnes, B. and Djilali, N., "Analysis of Coupled Proton and Water Transport in a PEM Fuel Cell Using the Binary Friction Membrane Model," Electrochim Acta, 52, 1038-1052(2006).   DOI
10 Berg, P., Promislow, K., Pierre, J., Stumper, J. and Wetton, B., "Water Management in PEM Fuel Cells," J. Electrochem. Soc., 151, A 341-353(2004).   DOI
11 Ju, H. and Wang, C. Y., "Simon Cleghorn, Uwe Beusher, "Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation," J. of Electrochem. Soc., 152(8), A1645-A1653(2005).   DOI
12 Kulikovsky, A. A., "The Effect of Cathodic Water on Performance of a Polymer Electrolyte Fuel Cell," Electrochim Acta, 49, 5187-5196(2004).   DOI
13 Kshitsh, A. Patankar, David, A. Dillard, Scott, W. Case, Michael, W. Ellis, Yeh-Hung, Lai, Michael K. Budinski, Graig S. Gittleman, "Hydrothermal Cahracterization of the Viscoelastic Properties of Gore-Select$^{(R)}$57 Protoen Exchange Membrane," Mech Time-Depend Mater, 12, 211-236(2008).
14 Ye, X. and Wang, C. Y., "Measurement of Water Transport Properties Through Membrane-electrode Assemblies, I. Membrane," J. of Electrochem. Soc., 154(7), B676-B682(2007).   DOI
15 Springer, T. E., Zawodzinski, T. A. and Gattesfeld, S., "Polymer Electrolyte Fuel Cell Model," J. of Electrochem. Soc., 138(8), 2334-2342(1991).   DOI
16 Zawodzinski, T. A., Springer, T. E., Davey, J., Jestel, R., Lopez, C., Valerio, J. and Gottesfeld, S., "A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes," J. Electrochem. Soc. 140, 1981-1985(1993).   DOI
17 Cooper, K. R., "Progress Toward Accurate Through-plane Ion Transport Resistance Measurement of Thin Solid Electrolytes," J. Electrochem. Soc., 157, B1731-1739(2010).   DOI
18 Jeong, J. J., Shin, Y. C., Lee, M. S., Lee, D. H., Na , I. C.i, Lee, H. and Park, K. P., "Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 51(5), 556-560(2013).   DOI