• Title/Summary/Keyword: Ionic channel

Search Result 61, Processing Time 0.026 seconds

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

Application of a. Strip Ion-Selective Electrode Sensor for Hydroponic Nutrient Solution Analysis - NO3 Analysis - (양액의 영양분 분석을 위한 Strip형 이온선택성전극 센서 의 응용 -NO3 이온 분석 -)

  • 김기영
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-342
    • /
    • 2003
  • A simple disposable thick-film potentiometric strip has been developed and evaluated for hydroponics application. The strip consisted of low ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, and magnesium were measured with specially designed 16-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The thick-film sensors exhibit linear relationships over five concentration decades. The concentration of N $O_3$ - ion in standard solution can be determined by direct potentiometric measurements without any conditioning before measurements. However, measurement of $K^{+}$, N $H_4$$^{+}$, and $Mg^{2+}$ ionic concentrations in nutrient solutions seems not feasible.

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories (이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터)

  • Cho, Boeun;Kang, Moon Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.759-763
    • /
    • 2016
  • We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.

Self sustained n-type memory transistor devices based on natural cellulose paper fibers

  • Martins, R.;Barquinha, P.;Pereira, L.;Goncalves, G.;Ferreira, I.;Fortunato, E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1044-1046
    • /
    • 2009
  • Here we report the architecture for a non-volatile n-type memory paper field-effect transistor. The device is built using the hybrid integration of natural cellulose fibers (pine and eucalyptus fibers embedded in an ionic resin), which act simultaneously as substrate and gate dielectric, with amorphous GIZO and IZO oxides as gate and channel layers, respectively. This is complemented by the use of continuous patterned metal layers as source/drain electrodes.

  • PDF

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

Discriminant Analysis of Marketed Beverages Using Multi-channel Taste Evaluation System (다채널 맛 평가시스템에 의한 시판음료의 판별분석)

  • Park, Kyung-Rim;Bae, Young-Min;Park, In-Seon;Cho, Yong-Jin;Kim, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.300-306
    • /
    • 2004
  • Eight cation or anion-responsive polymer membranes were prepared by a casting procedure employing polyvinyl chloride, Bis (2-ethylhexyl)sebacate and each electroactive material in the ratio of 66 : 33 : 1. The resulting membranes were separately installed onto the sensitive area of the ionic electrodes to produce an 8-channel taste sensor array. The taste sensors of the array were connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a PC via an A/D converter. The taste evaluation system was applied to a discriminant analysis on six groups of marketed beverages like sikhye, sujunggwa, tangerine juice, ume juice, ionic drink and green tea. When the signal data from the sensor array were analyzed by principal component analysis after normalization, the 1st, 2nd and 3rd principal component explained most of the total data variance. The six groups of the analyzed beverages were discriminated well in the three dimensional principal component space. The half of the five groups of the analyzed beverages was also discriminated in the two dimensional principal component plane.

A Study on the Flooding Phenomena of Cathode Flow Path with Operating Temperatures in a PEM Fuel Cell (고분자전해질형 연료전지의 작동 온도에 따른 공기극 유로 내 플러딩 현상에 관한 연구)

  • Kim Han-Sang;Ha Taehun;Min Kyoungdoug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.326-329
    • /
    • 2005
  • Proton exchange membrane (PEM) should be sufficiently hydrated with proper water management to maintain a good ionic conductivity and performance of a PEM fuel cell. However. cathode flooding resulting from excess water can impede the transport of reactants and hence deteriorate the fuel cell performance. For the PEM fuel cell to be commercially viable as vehicle or portable applications, the flooding on the cathode side should be minimized during the fuel cell operation. In this study, visualization technique was applied to understand the cathode flooding phenomena on the cathode side of a PEM fuel cell. To this end. a transparent PEM unit fuel cell wi th an act ive area of $25cm^2$ was designed and manufactured to allow for the visualization of cathode channel with performance characteristics. Two-phase flow resulting from the electro-chemical reaction of fuel cell was investigated experimentally. The images photographed by CCD camera with cell operating temperatures $(30\~50^{\circ}C)$ were presented. Results indicated that the flooding on the cathode side first occurs near the exit of cathode channel. As the operating temperature of fuel cell increases. it was found that liquid water droplets tend to evaporate easily and it can have an influence on lowering the flooding level. It is expected that this study can effectively contribute to the detailed researches on modeling water transport of an operating PEM fuel cell including two-phase flow phenomena.

  • PDF

Calcium Influx is Responsible for Afterdepolarizations in Rat Hippocampal Dentate Granule Cells

  • Park, Won-Sun;Lee, Suk-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2002
  • Granule cells in dentate gyrus of hippocampus relay information from entorhinal cortex via perforant fiber to pyramidal cells in CA3 region. Their electrical activities are known to be closely associated with seizure activity as well as memory acquisition. Since action potential is a stereotypic phenomena which is based on all-or-none principle of $Na^+$ current, the neuronal firing pattern is mostly dependent on afterpotentials which follows the stereotypic $Na^+$ spike. Granule cells in dentate gyrus show afterdepolarization (ADP), while interneurons in dentate gyrus have afterhyperpolarizaton. In the present study, we investigated the ionic mechanism of afterdepolarization in hippocampal dentate granule cell. Action potential of dentate granule cells showed afterdepolarization, which was characterized by a sharp notch followed by a depolarizing hump starting at about $-49.04{\pm}1.69\;mV\;(n=43,\;mean{\pm}SD)$ and lasting $3{\sim}7$ ms. Increase of extracellular $Ca^{2+}$ from 2 mM to 10 mM significantly enhanced the ADP both in amplitude and in duration. A $K^+$ channel blocker, 4-aminopyridine (4-AP, 2 mM), enhanced the ADP and often induced burst firings. These effects of 10 mM $Ca^{2+}$ and 4-AP were additive. On the contrary, the ADP was significantly suppressed by removal of external $Ca^{2+},$ even in the presence of 4-AP (2 mM). A $Na^+$ channel blocker, TTX (100 nM), did not affect the ADP. From these results, it is concluded that the extracellular $Ca^{2+}$ influx contributes to the generation of ADP in granule cells.

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

Design of Bias Circuit for Measuring the Multi-channel ISFET (다채널 ISFET 측정용 단일 바이어스 회로의 설계)

  • Cho, Byung-Woog;Kim, Young-Jin;Kim, Chang-Soo;Choi, Pyung;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • Multi-channel sensors can be used to increase the reliability and remove the random iloise in ion-sensitive field effect transistors(ISFETs). Multi-channel sensors is also an essential step toward potential fabrication of sensors for several ionic species in one device. However, when the multi-channel sensors are separately biased, the biasing problems become difficult, that is to say, the bias circuit is needed as many sensors. In this work, a circuit for biasing the four pH-ISFETs in null-balance method, where bias voltages are switched, was proposed. The proposed concept is need only one bias circuit for the four sensors. Therefore it has advantages of smaller size and lower power consumption than the case that all sensors are separately biased at a time. The proposed circuit was tested with discrete devices and its performance was investigated. In the recent trend, sensor systems are implemented as portable systems. So the verified measurement circuit was integrated by using the CMOS circuit. Fortunately, ISFET fabrication process can be compatible with CMOS process. Full circuit has a mask area of $660{\mu}m{\times}500{\mu}m$. In the future, this step will be used for developing the smart sensor system with ISFET.

  • PDF