Browse > Article

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes  

Park, Jin-Kyoung (Department of Applied Chemistry, Sejong University)
Won, Jong-Ok (Department of Applied Chemistry, Sejong University)
Kim, Chan-Kyung (Department of Chemistry, Inha University)
Publication Information
Macromolecular Research / v.15, no.6, 2007 , pp. 581-586 More about this Journal
Abstract
Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.
Keywords
DNA; acid-base polymer blend; polymer electrolyte membranes; ab initio; fuel cells;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev., 104, 4637 (2004)   DOI   ScienceOn
2 K. D. Kreuer, J. Membr. Sci., 185, 29 (2001)   DOI   ScienceOn
3 K. D. Kreuer, Solid State Ionics, 136-137, 149 (2000)
4 S. J. Paddison, Annu. Rev. Mater. Res., 33, 289 (2003)   DOI   ScienceOn
5 S. J. Paddison, R. Paul, and T. A. Zawodzinski, Jr., J. Electrochem. Soc., 147, 617 (2000)
6 S. J. Paddison, R. Paul, and T. A. Zawodzinski, Jr., J. Chem. Phys., 115, 7753 (2001)   DOI   ScienceOn
7 S. J. Paddison, R. Paul, and K. D. Kreuer, Phys. Chem. Chem. Phys.,4, 1151, 1158 (2002)
8 P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299 (1985)
9 Y.-L. Zhou and Y.-Z. Li, Spectrochim. Acta Part A, 60, 377 (2004)   DOI   ScienceOn
10 W. R Wadt and P. J. Hay, J. Chem. Phys., 82, 284 (1985)
11 W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley-Interscience, New Yorks, 1985
12 M. Eikerling, S. J. Paddison, L. R. Pratt, and T. A. Zawodzinski, Jr., Chem. Phys. Lett., 368, 108 (2003)   DOI
13 H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006)   과학기술학회마을   DOI
14 J. A. Pop Ie, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Quantum Chem., 13, 225 (1979)
15 J. A. Pople, H. B. Schlegel, R. Krishnan, D. J. Defrees, J. S. Binkley, M. J. Frisch, R. A. Whiteside, R. F. Hout, and W. J. Hehre, Quantum Chem., 15, 269 (1981)
16 S. J. Paddison and J. A. Elliott, J. Phys. Chem. A, 109, 7583 (2005)   DOI   ScienceOn
17 M.-S. Kang, J. H. Kim, J. Won, S.-H. Moon, and Y. S. Kang, J. Membr. Sci., 247, 127 (2005)   DOI
18 M. A. Vargas, R. A. Vargas, and B.-E. Mellander, Electrochim. Acta, 44, 4227 (1999)
19 J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003)   DOI   ScienceOn
20 J. Won, S. K. Chae, J. H. Kim, H. H. Park,Y. S. Kang, and H. S. Kim, J. Membr. Sci., 249, 113 (2005)   DOI
21 A. D. Becke, Chem. Phys., 98, 5648 (1993)
22 P. J. Hey and W. R. Wadt, J. Chem. Phys., 82, 270 (1985)
23 J. Li, C. H. Lee, H. B. Park, and Y. M. Lee, Macromol. Res., 14, 438 (2006)   과학기술학회마을   DOI
24 H. Ohno and N. Takizawa, Chem. Lett., 642 (2000)
25 Y. Cai, D. Wang, X. Hu, Y. Xu, Y. Zhao, J. Wu, and D. Xu, Macromol. Chem. Phys., 202, 2434 (2001)   DOI   ScienceOn