• Title/Summary/Keyword: Ionic Additive

Search Result 54, Processing Time 0.025 seconds

Calculation of Electronic State of MnO2 Oxide Electode Having Ni Additive (Ni이 첨가된 $MnO_2$ 산화물전극의 전자상태 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1515-1517
    • /
    • 2002
  • $MnO_2$ is used for the oxide electrode of electrochemical equipments because of its good electric conductivity and low oxygen overpotential. The effect of additives on the properties of $MnO_2$ has been investigated to enhance the electric conductivity and the stability in an acid solution. In this research, the effect of Ni addition on ${\beta}-MnO_2$ was studied by the theoretical quantum chemical method. The calculation was carried out by the discrete variation $X{\alpha}$ method, which is a sort of the first principle method and use Hatre-Fock-Slater approximation. The electron energy level, the density of state, the bond overlap population, the charge density distribution and the net ionic transfer between cations and anions were calculated and discussed. The used cluster model was $(Mn_{10}NiO_{44})^{-44}$.

  • PDF

Synthesis and Nucleation Behavior of MoO3 Nano Particles with Concentration of Precursors (전구체 농도에 따른 MoO3 나노 분말 합성 및 핵생성 거동)

  • Lee, Seyoung;Kwon, Namhun;Roh, Jaeseok;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.394-400
    • /
    • 2020
  • Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.

Cross-linkable Polymer Matrix for Enhanced Thermal Stability of Succinonitrile-based Polymer Electrolyte in Lithium Rechargeable Batteries

  • Ryou, Myung-Hyun;Lee, Dong-Jin;Lee, Je-Nam;Lee, Hong-Kyeong;Seo, Myung-Won;Lee, Hye-Won;Shin, Weon-Ho;Lee, Yong-Min;Choi, Jang-Wook;Park, Jung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • A polymer electrolyte was prepared by using polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) or poly(ethylene glycol) dimethacrylate (PEGDMA) as polymer matrices, succinonitrile as an additive, and lithium perchlorate as a lithium salt. Compared to the polymer electrolyte employing PVdF-HFP, the PEGDMA-based polymer electrolyte exhibits substantially superior thermal stability when exposed to high temperatures. Nonetheless, the ionic conductivity of the PEGDMA-based polymer electrolyte was preserved in a wide temperature range between $-20^{\circ}C$ and $80^{\circ}C$.

Influence of Interface Active substances(Ionic and Amphoteric) on Chemical property and Streaming Electrification of Transformer Oil (이온성 및 양성 계면 활성제가 변압기유의 화학적 특성 및 유동대전에 미치는 영향)

  • 김용운;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.719-726
    • /
    • 1997
  • This research was conducted to analyze the change of surface tension, viscosity, streaming current and conductivity of transformer oil when it were injected with the interface active substances.(anionic:S-111, cationic:S-121, amphoteric:S-131) The changes properties of the surface tension and viscosity of the oil which were injected with the interface active substances were divided into the changes area and the minimum reduction area. The surface tension and viscosity of the oil which were injected with three different kinds of interface active substances showed remarkable change at the point where the concentration of the substance in anionic, in cationic and in amphoteric were 100[ppm], 10[ppm] and 1[ppm] respectively. The streaming current and conductivity of the same sample oil were also changed at the same densities of the surface tension and viscosity. For this factor, it was possibile for us to interpret the mechanism of the streaming current and conductivity. Therefore the interface active substances of the three kinds were injected into the oil within the limit of optimal volume, prevention effects of electrification were showed more excellence than unmixed insulating oil.

  • PDF

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent

  • Wu, Hao;Kudo, Tatsuya;Kim, Seong-Yun;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1597-1605
    • /
    • 2022
  • A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.

Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery (리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화)

  • Ki-Wook, Sung;Hyo-Jin, Ahn
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Calcium Influx is Responsible for Afterdepolarizations in Rat Hippocampal Dentate Granule Cells

  • Park, Won-Sun;Lee, Suk-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2002
  • Granule cells in dentate gyrus of hippocampus relay information from entorhinal cortex via perforant fiber to pyramidal cells in CA3 region. Their electrical activities are known to be closely associated with seizure activity as well as memory acquisition. Since action potential is a stereotypic phenomena which is based on all-or-none principle of $Na^+$ current, the neuronal firing pattern is mostly dependent on afterpotentials which follows the stereotypic $Na^+$ spike. Granule cells in dentate gyrus show afterdepolarization (ADP), while interneurons in dentate gyrus have afterhyperpolarizaton. In the present study, we investigated the ionic mechanism of afterdepolarization in hippocampal dentate granule cell. Action potential of dentate granule cells showed afterdepolarization, which was characterized by a sharp notch followed by a depolarizing hump starting at about $-49.04{\pm}1.69\;mV\;(n=43,\;mean{\pm}SD)$ and lasting $3{\sim}7$ ms. Increase of extracellular $Ca^{2+}$ from 2 mM to 10 mM significantly enhanced the ADP both in amplitude and in duration. A $K^+$ channel blocker, 4-aminopyridine (4-AP, 2 mM), enhanced the ADP and often induced burst firings. These effects of 10 mM $Ca^{2+}$ and 4-AP were additive. On the contrary, the ADP was significantly suppressed by removal of external $Ca^{2+},$ even in the presence of 4-AP (2 mM). A $Na^+$ channel blocker, TTX (100 nM), did not affect the ADP. From these results, it is concluded that the extracellular $Ca^{2+}$ influx contributes to the generation of ADP in granule cells.

Hydrothermal Synthesis of LaCO3OH and Ln3+-doped LaCO3OH Powders under Ambient Pressure and Their Transformation to La2O2CO3 and La2O3

  • Lee, Min-Ho;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3609-3614
    • /
    • 2013
  • Orthorhombic and hexagonal lanthanum(III) hydroxycarbonate ($LaCO_3OH$) and $Ln^{3+}$-doped $LaCO_3OH$ ($LaCO_3OH:Ln^{3+}$, where Ln = Ce, Eu, Tb, and Ho) powders were prepared by a hydrothermal reaction under ambient pressure and characterized by thermogravimetry, powder X-ray diffraction, infrared and luminescence spectroscopy, and field-emission scanning electron microscopy. The polymorph of $LaCO_3OH$ depended on the reaction temperature, inorganic salt additive, species of $Ln^{3+}$ dopant, and solvent. The calcination of orthorhombic $LaCO_3OH:Ln^{3+}$ (2 mol %) powers at $600^{\circ}C$ yielded a mixture of hexagonal and monoclinic $La_2O_2CO_3:Ln^{3+}$ powders. The relative quantity of the latter increased with decreasing ionic radius of the $Ln^{3+}$ dopant ion and increasing doping concentrations. On the other hand, the calcination of hexagonal $LaCO_3OH:Ln^{3+}$ (2 mol %) powders at $600^{\circ}C$ resulted in a pure hexagonal $La_2O_2CO_3:Ln^{3+}$ powder, regardless of the species of $Ln^{3+}$ ions (Ln = Ce, Eu, and Tb). The luminescence spectra of $LaCO_3OH:Ln^{3+}$ and $La_2O_2CO_3:Ln^{3+}$ were measured to examine the effect of their polymorph on the spectra.

Ultrasonic-assisted Micellar Extraction and Cloud-point Pre-concentration of Major Saikosaponins in Radix Bupleuri using High Performance Liquid Chromatography with Evaporative Light Scattering Detection

  • Suh, Joon-Hyuk;Yang, Dong-Hyug;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2637-2642
    • /
    • 2011
  • A new ultrasonic-assisted micellar extraction and cloud-point pre-concentration method was developed for the determination of major saikosaponins, namely saikosaponins -A, -C and -D, in Radix Bupleuri by high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The non-ionic surfactant Genapol X-080 (oligoethylene glycol monoalkyl ether) was chosen as the extraction additive and parameters affecting the extraction efficiency were optimized. The highest yield was obtained with 10% (w/v) Genapol X-080, a liquid/solid ratio of 200:1 (mL/g) and ultrasonic-assisted extraction for 40 min. In addition, the optimum cloud-point pre-concentration was reached with 10% sodium sulfate and equilibration at $60^{\circ}C$ for 30 min. Separation was achieved on an Ascentis Express C18 column (100 ${\times}$ 4.6 mm i.d., 2.7 ${\mu}M$) using a binary mobile phase composed of 0.1% acetic acid and acetonitrile. Saikosaponins were detected by ELSD, which was operated at a $50^{\circ}C$ drift tube temperature and 3.0 bar nebulizer gas ($N_2$) pressure. The water-based solvent modified with Genapol X-080 showed better extraction efficiency compared to that of the conventional solvent methanol. Recovery of saikosaponins ranged from 93.1 to 101.9%. An environmentally-friendly extraction method was successfully applied to extract and enrich major saikosaponins in Radix Bupleuri.