Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.026

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent  

Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Kudo, Tatsuya (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Miwa, Misako (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Matsuyama, Shigeo (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1597-1605 More about this Journal
Abstract
A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.
Keywords
Cesium; Adsorption; Seawater; Particle-induced X-ray emission;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Karimi-Maleh, M. Shafieizadeh, M.A. Taher, F. Opoku, E.M. Kiarii, P.P. Govender, S. Ranjbari, M. Rezapour, Y. Orooji, The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation, J. Mol. Liq. 298 (2020), 112040, https://doi.org/10.1016/j.molliq.2019.112040.   DOI
2 MdR. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, T. Yaita, Encapsulation of cesium from contaminated water with highly selective facial organiceinorganic mesoporous hybrid adsorbent, Chem. Eng. J. 291 (2016) 128-137, https://doi.org/10.1016/j.cej.2016.01.109.   DOI
3 Y. Funabashi, K. kitazawa, Fukushima in review: A complex disaster, a disastrous Response, Bull. At. Sci. 68 (2) 9-21, http://doi.org/10.1177/0096340212440359.   DOI
4 MdR. Awual, MdM. Hasan, A ligand based innovative composite material for selective lead(II) capturing from wastewater, J. Mol. Liq. 294 (2019), 111679, https://doi.org/10.1016/j.molliq.2019.111679.   DOI
5 B.K. Tang, W.T. Bi, M.L. Tian, K.H. Row, Application of ionic liquid for extraction and separation of bioactive compounds from plants, J. Chromatogr. B 904 (2012) 1-21, https://doi.org/10.1016/j.jchromb.2012.07.020.   DOI
6 MdR. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep. 6 (2016) 1-10, https://doi.org/10.1038/srep19937.   DOI
7 Y. Wu, X.X. Zhang, S.Y. Kim, Y.Z. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol. 53 (2016), https://doi.org/10.1080/00223131.2016.1175979, 1968-1977.   DOI
8 Q. Zou, Y. Wu, Q.D. Shu, S.Y. Ning, X.P. Wang, Y.Z. Wei, F.D. Tang, Separation of palladium along with minor actinides by isoBu-BTP/SiO2-P adsorbent from high-level liquid waste, J. Chem. Eng. Data 63 (2018) 2931-2939, https://doi.org/10.1021/acs.jced.8b00238.   DOI
9 Y. Wu, X.X. Zhang, S.Y. Kim, Y.Z. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol. 53 (2016), https://doi.org/10.1080/00223131.2016.1175979, 1968-1977.   DOI
10 MdR. Awual, MdM. Hasand, J. Iqbal, MdA. Islam, A. Islam, S. Khandaker, A.M. Asiri, M.M. Rahman, J. Environ. Chem. Eng. 8 (2020), 103591, https://doi.org/10.1016/j.jece.2019.103591.   DOI
11 Z.A. Alothman, A review: Fundamental Aspects of silicate mesoporous materials, Materials 5 (2012) 2874-2902, https://doi.org/10.3390/ma5122874.   DOI
12 MdR. Awual, MdM. Hasan, J. Iqbal, A. Islam, MdA. Islam, A.M. Asiri, M.M. Rahman, Naked-eye lead(II) capturing from contaminated water using innovative large-pore facial composite materials, Microchem. J. 154 (2020), 104585, https://doi.org/10.1016/j.microc.2019.104585.   DOI
13 X.Q. Sun, H.M. Luo, S. Dai, Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle, Chem. Rev. 112 (2012) 2100-2128, https://doi.org/10.1021/cr200193x.   DOI
14 Z. Chen, Y. Wu, Y.Z. Wei, Cesium removal from high level liquid waste utilizing a macroporous silica-based calix[4]arene-R14 adsorbent modified with surfactants, Energy Procedia 39 (2013) 319-327, https://doi.org/10.1016/j.egypro.2013.07.219.   DOI
15 MdR. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135, https://doi.org/10.1016/j.cej.2013.12.072.   DOI
16 A.Y. Zhang, Y.Z. Wei, H. Hoshi, Y. Koma, M. Kamiya, Partitioning of cesium from a simulated high level liquid waste by extraction chromatography utilizing a macroporous silica-based supramolecular calix[4]arene-crown impregnated polymeric composite, solvent extr, Ion Exch 25 (2007) 389-405, https://doi.org/10.1080/07366290701285322.   DOI
17 I. Hierro, Y. Perez, M. Fajardo, Supported choline hydroxide (ionic liquid) on mesoporous silica as heterogeneous catalyst for Knoevenagel condensation reactions, Microporous Mesoporous Mater. 263 (2018) 173-180, https://doi.org/10.1016/j.micromeso.2017.12.024.   DOI
18 S. Khandaker, Y. Toyohara, G.C. Saha, MdR. Awual, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies, J. Water Process Eng. 33 (2020), 101055, https://doi.org/10.1016/j.jwpe.2019.101055.   DOI
19 G.T. Wei, Z.S. yang, C.J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Anal. Chim. Acta 488 (2003) 183-192, https://doi.org/10.1016/S0003-2670(03)00660-3.   DOI
20 M.L. Dietz, Ionic liquids as extraction solvents: where do we stand? Separ. Sci. Technol. 41 (2006) 2047-2063, https://doi.org/10.1080/01496390600743144.   DOI
21 Q. Yu, S.Y. Ning, W. Zhang, X.P. Wang, Y.Z. Wei, Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent, Hydrometallurgy 181 (2018) 74-81, https://doi.org/10.1016/j.hydromet.2018.07.025.   DOI
22 S. Toyama, S. Matsuyama, K. Ishii, A. Terakawa, K. Kasahara, D. Sata, S. Itoh, T. Tanimukai, J. Uegaki, T. Tada, Development of WDX-µ-PIXE system using a microbeam for chemical state analysis, CYRIC Annual Report 24 (2014) 111-120, https://doi.org/10.1142/S012908351440004X.   DOI
23 K.T. Kubra, MdS. Salman, MdN. Hasan, A. Islam, MdM. Hasan, MdR. Awual, Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater, J. Mol. Liq. 336 (2021), 116325, https://doi.org/10.1016/j.molliq.2021.116325.   DOI
24 H.M. Luo, S. Dai, P.V. Bonnesen, A.C. Buchanan, J.D. Holbrey, N.J. Bridges, R.D. Rogers, Extraction of cesium ions from aqueous solutions using calix[4] arene-bis(tert-octylbenzo-crown-6) in ionic liquids, Anal. Chem. 76 (2004) 3078-3083, https://doi.org/10.1021/ac049949k.   DOI
25 S. Khandaker, M.F. Chowdhury, MdR. Awual, A. Islam, T. Kuba, Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal, Chemosphere 262 (2021), 127801, https://doi.org/10.1016/j.chemosphere.2020.127801.   DOI
26 Q.T.N. Le, K. Cho, Caesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide, J. Colloid Interface Sci. 581 (2021) 741-750, https://doi.org/10.1016/j.jcis.2020.08.017.   DOI
27 V. Veliscek-Carolan, Separation of actinides from spent nuclear fuel: a review, J. Hazard Mater. 318 (2016) 266-281, https://doi.org/10.1016/j.jhazmat.2016.07.027.   DOI
28 K.A. Rogers, Fire in the hole: a review of national spent nuclear fuel disposal policy, Prog. Nucl. Energy 51 (2009) 281-289, https://doi.org/10.1016/j.pnucene.2008.09.004.   DOI
29 A. Mishra, L.K. Singh, Review of nuclear fuel reprocessing, J. Crit. Rev. 7 (2020) 1352-1356, https://doi.org/10.31838/jcr.07.07.245.   DOI
30 MdR. Awual, T. Yaita, T. Kobayashi, H. Shiwaku, S. Suzuki, Improving cesium removal to clean-up the contaminated water using modified conjugate material, J. Environ. Chem. Eng. 8 (2020), 103684, https://doi.org/10.1016/j.jece.2020.103684.   DOI
31 MdR. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J. 303 (2016) 539-546, https://doi.org/10.1016/j.cej.2016.06.040.   DOI
32 MdR. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard Mater. 278 (2014) 227-235, https://doi.org/10.1016/j.jhazmat.2014.06.011.   DOI
33 S. Eun, J. Ryu, H. Kim, H.J. Hong, S. Kim, Simultaneous removal of radioactive cesium and strontium from seawater using a highly efficient Prussian blue-embedded alginate aerogel, J. Environ. Manag. 297 (2021), 113389, https://doi.org/10.1016/j.jenvman.2021.113389.   DOI
34 H. Thielen, The Fukushima Daiichi nuclear Accident-An overview, Health Phys. 103 (2012) 169-174, https://doi.org/10.1097/HP.0b013e31825b57ec.   DOI
35 H. Luo, S. Dai, P.V. Bonnesen, T.J. Haverlock, B.A. Moyer, A.C. Buchanan III, A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by Dicyclohexano-18-crown-6, solvent extr, Ion Exch 24 (2006) 19-31, https://doi.org/10.1080/07366290500388624.   DOI
36 A.N. Turanov, V.K. Karandashev, M. Boltoeva, Solvent extraction of intra-lanthanides using a mixture of TBP and TODGA in ionic liquid, Hydrometallurgy 195 (2020), 105367, https://doi.org/10.1016/j.hydromet.2020.105367.   DOI
37 MdR. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J. 266 (2015) 368-375, https://doi.org/10.1016/j.cej.2014.12.094.   DOI
38 M. Baba, Fukushima accident: what happened? Radiat. Meas. 55 (2013) 17-21, https://doi.org/10.1016/j.radmeas.2013.01.013.   DOI
39 MdN. hasan, M.A. Shenashen, MdM. Hasan, H. Znad, MdR. Awual, Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent, Chemosphere 270 (2021), 128668, https://doi.org/10.1016/j.chemosphere.2020.128668.   DOI
40 A.F. Tag El-Din, M.E. El-Khouly, E.A. Elshehy, A.A. Atia, W.A. El-Said, Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion exchanger for cesium ions removal from seawater, Microporous Mesoporous Mater. 265 (2018) 211-218, https://doi.org/10.1016/j.micromeso.2018.02.014.   DOI