Hydrothermal Synthesis of LaCO₃OH and Ln³⁺-doped LaCO₃OH Powders under Ambient Pressure and Their Transformation to La₂O₂CO₃ and La₂O₃

Min-Ho Lee and Woo-Sik Jung*

School of Chemical Engineering, College of Engineering, Yeungnam University, Gyongsan 712-749, Korea *E-mail: wsjung@yu.ac.kr Received August 27, 2013, Accepted September 9, 2013

Orthorhombic and hexagonal lanthanum(III) hydroxycarbonate (LaCO₃OH) and Ln³⁺-doped LaCO₃OH (LaCO₃OH:Ln³⁺, where Ln = Ce, Eu, Tb, and Ho) powders were prepared by a hydrothermal reaction under ambient pressure and characterized by thermogravimetry, powder X-ray diffraction, infrared and luminescence spectroscopy, and field-emission scanning electron microscopy. The polymorph of LaCO₃OH depended on the reaction temperature, inorganic salt additive, species of Ln³⁺ dopant, and solvent. The calcination of orthorhombic LaCO₃OH:Ln³⁺ (2 mol %) powers at 600 °C yielded a mixture of hexagonal and monoclinic La₂O₂CO₃:Ln³⁺ powders. The relative quantity of the latter increased with decreasing ionic radius of the Ln³⁺ dopant ion and increasing doping concentrations. On the other hand, the calcination of hexagonal LaCO₃OH:Ln³⁺ (2 mol %) powders at 600 °C resulted in a pure hexagonal La₂O₂CO₃:Ln³⁺ powder, regardless of the species of Ln³⁺ ions (Ln = Ce, Eu, and Tb). The luminescence spectra of LaCO₃OH:Ln³⁺ and La₂O₂CO₃:Ln³⁺ were measured to examine the effect of their polymorph on the spectra.

Key Words : Hydrothermal reaction, LaCO₃OH, La₂O₂CO₃, Polymorph, Luminescence

Introduction

Trivalent lanthanide (Ln^{3+}) ions have high affinity to the carbonate (CO_3^{2-}) ion, as evidenced by the occurrence of stable minerals such as (La,Ce, Nd)₂(CO₃)₃·8H₂O (lanthanite), (La,Ce)₂(CO₃)₃·4H₂O (calkinsite), and (La,Ce)(F,OH)CO₃ (bastnaesite).¹ Of the lanthanum carbonates, LaFCO₃ and LaCO₃OH are useful starting materials for their thermal decomposition products such as LaOF, La2O2CO3, and La₂O₃, which are attractive host materials of phosphors.²⁻⁶ LaFCO₃ powders exist as a single polymorph (hexagonal one), whereas LaCO₃OH powders exist in two polymorphs, i.e., orthorhombic (o-) and hexagonal (h-) LaCO₃OH. To date, LaCO₃OH powders have been synthesized using a variety of methods, including the hydrolysis of LaCl₃-trichloroactic acid solution by ammonia,⁷ hydrolysis of La(III) carbonate under high⁸ and ambient⁹ pressure, reaction of LaBrOH with CO₂,⁹ solvothermal reaction of La₂O₃ in a mixed solvent of ionic liquid and water,10 and solvent-free dissociation of La(III) acetate hydrate under autogenic pressure at 700 °C.11 LaCO₃OH powders have been also prepared by a hydrothermal reaction in an autoclave using the following reagents: LaCl₃ and thiourea,^{12,13} La(NO₃)₃ and urea,^{4,14} La(NO₃)₃, glucose, and acrylamide,¹⁵ La₂O₃ and glycine,¹⁶ LaCl₃ and gelatin,¹⁷ La(oleate)₃ and aqueous tertbutylamine,¹⁸ La³⁺-EDTA complex and urea,¹⁹ and La(NO₃)₃ and NH₄HCO₃.²⁰ According to these reports, most LaCO₃OH powders prepared by a hydrothermal reaction in an autoclave had the hexagonal polymorph. On the other hand, o-LaCO₃OH powders sometimes formed in an autoclave.^{15,17} LaCO₃OH powders can also be prepared by a hydrothermal reaction without the need for an autoclave,^{3,21} as for LaFCO₃

powders.²² To date, there are still no reports on the factors determining the polymorph of LaCO₃OH powders obtained by a hydrothermal reaction under ambient pressure.

In this study, LaCO₃OH powders were prepared by a hydrothermal reaction from the solution containing La(NO₃)₃ and urea without the need for an autoclave. The effects of the reaction temperature, inorganic salt additive, species of Ln³⁺ dopant, and solvent on the polymorph of LaCO₃OH powders were investigated. Urea is used widely as the precipitation reagent of metal ions because it thermally decomposes into NH₃ and CO₃²⁻ ions in neutral and basic aqueous solutions.²³ The as-prepared LaCO₃OH powders were characterized by powder X-ray diffraction (XRD), Fourier transformation infrared (IR) spectroscopy, thermogravimetric (TG) and differential thermal analysis (DTA), and fieldemission scanning electron microscopy (FE-SEM). Ln³⁺doped LaCO₃OH (LaCO₃OH:Ln³⁺, where Ln = Ce, Eu, Tb, and Ho) powders were also synthesized to determine the effect of dopants on the polymorph of La2O2CO3 and La₂O₃. The luminescence spectra of the LaCO₃OH:Eu³⁺ and La₂O₂CO₃:Eu³⁺ powders were measured to examine the effect of their polymorph on the spectra.

Experimental Section

Synthesis of LaCO₃OH and LaCO₃OH:Ln³⁺ Powders. All starting materials, La(NO₃)₃·6H₂O (99.9%), Ce(NO₃)₃·6H₂O (99.99%), Eu(NO₃)₃·6H₂O (99.9%), Tb(NO₃)₃·6H₂O (99.99%), Ho(NO₃)₃·5H₂O (99.9%), and urea (99.0%) were purchased from Sigma-Aldrich Co. and used as-received without further purification. In a typical synthesis of LaCO₃OH powder, 8.66 g (2.00×10^{-2} mol) of La(NO₃)₃·6H₂O and 6.01 g (1.00 $\times 10^{-1}$ mol) of urea were dissolved in 50 mL of a mixed solvent of ethylene glycol (EG) and water. EG to water volume ratios were 9:1, 8:2, 7:3, 6:4, 5:5, 2:8, and 0:10. The solution was boiled for 24 h under ambient pressure and cooled to room temperature. Sequentially, the white precipitate was separated by centrifugation, washed several times with water and ethyl alcohol, and dried in an oven at 70 °C. The quantities of La(NO₃)₃·6H₂O, urea, and solvent were kept constant through this study. LaCO₃OH:Ln³⁺ powders were prepared in the same way as that for LaCO₃OH powders except that Ln(NO₃)₃ salts (2 mol %) were added to the solution containing 8.49 g of La(NO₃)₃·6H₂O.

Characterization. The LaCO₃OH powders and their thermal decomposition products were characterized by powder XRD (PANalytical X'Pert PRO MPD X-ray diffiactometer) using Cu-K α radiation operating at 40 kV and 30 mA and IR spectroscopy (Nicolet 6700, Thermo Scientific). The TG and DTA curves of LaCO₃OH powders were recorded on an SDT Q600 apparatus (TA Instruments) at a heating rate of 10 °C/min. The morphology of the product powders was investigated by FE-SEM (Hitachi S-4200). The lumine-scence spectra of LaCO₃OH:Eu³⁺ and La₂O₂CO₃:Eu³⁺ were measured at ambient temperature on a JASCO FP-6500 spectrofluorometer with a 150 W xenon lamp.

Results and Discussion

Synthesis of LaCO₃OH and LaCO₃OH:Ln³⁺ Powders. The LaCO₃OH powders were synthesized by a hydrothermal reaction in various mixed solvents such as water-EG and water-DMSO, without the use of an autoclave. EG is used widely as a solvent to control the morphology of many materials.^{4,5,24,25} EG is mixed with water at any ratio. The boiling point (B.P.) of the water-EG solution can be controlled easily by EG to water volume ratio. Recently, Mao et al. prepared LaCO₃OH powders by a hydrothermal reaction in water-EG solvents using an autoclave and reported that the volume ratio had remarkable effect on the species and morphology of the particles.⁴ Boiling (B. P. \geq 118 °C) in the mixed solvents containing more than 70 volume % EG gave a pure h-LaCO₃OH powders (Figure 1(a)). In contrast, o-LaCO₃OH powders mixed with a very small amount of h-LaCO₃OH powders were obtained by boiling (B. P. \leq 110 °C) in mixed solvents containing less than 60 volume % EG (Figure 1(b)). These results are considerably different from those obtained by hydrothermal synthesis in an autoclave,⁴ where *h*-LaCO₃OH powders were obtained in mixed solvents containing less than 50 volume % EG, whereas $La_2(CO_3)_3(H_2O)_8$ and $La_2(CO_3)_3(OH)_2$ were obtained in mixed solvents containing more than 50 volume % EG.

To determine if the reaction temperature is a major factor influencing the polymorph of the LaCO₃OH powders, the LaCO₃OH powders were prepared in mixed solvents of water and DMSO (B. P. = 189 °C). Boiling (B. P. = 125 °C) the solution in a mixed solvent containing 80 volume % DMSO yielded a pure *o*-LaCO₃OH phase, whereas boiling

Min-Ho Lee and Woo-Sik Jung

Figure 1. XRD patterns of samples obtained by a hydrothermal reaction in water-EG solvents with (a) \geq 70 and (b) \leq 60 volume % of EG, (c) in water-DMSO containing 90 volume % DMSO, and (d) in water added with KNO₃: •, unidentified phase.

(B. P = 143 °C) the solution in a mixed solvent containing 90 volume % DMSO yielded an o-LaCO₃OH powder mixed with a small amount of h-LaCO₃OH powder, as shown in Figure 1(c). Therefore, even boiling at a higher B. P. in the water-DMSO system than in the water-EG system did not yield pure h-LaCO₃OH powders. This suggests that the polymorph of LaCO₃OH powders is determined not only by the reaction temperature but also by the solvent. Further evidence of the reaction temperature being not the main factor determining the polymorph of the LaCO₃OH powders was provided by the formation of o-LaCO₃OH powders in an autoclave at very high reaction temperatures.^{15,17} The reason why the phase of the LaCO₃OH powders depends on the solvent remains unclear. EG appears to be a favorable solvent for the preparation of h-LaCO₃OH powders at relatively low temperatures. In contrast to DMSO, EG has similar characteristics to water in that EG molecules can form hydrogen-bonded networks. These characteristics of EG may induce variations in the morphology and polymorph by changing the volume ratio of water-EG solvents.

Low reaction temperatures in hydrothermal reactions in which $La(NO_3)_3 \cdot 6H_2O$ and urea were used as reagents resulted in the formation of pure *o*-LaCO₃OH powders,³ but

Hydrothermal Synthesis of LaCO₃OH and Ln³⁺-doped LaCO₃OH

caused a low yield. For example, the reaction temperature of 66 °C in water caused the formation of o-LaCO₃OH powders in 24% yield. This yield increased with increasing reaction temperatures, but increasing the temperatures caused the formation of h-LaCO₃OH powders. Therefore, it is difficult to synthesize pure o-LaCO₃OH powders in high yield using La(NO₃)₃·6H₂O as the La³⁺ ion source. Pure *o*-LaCO₃OH powders were obtained in ca. 100% yield by boiling aqueous solution containing La(NO₃)₃·6H₂O, urea, and KNO₃, in which the KNO₃ to La(NO₃)₃·6H₂O mole ratio was two and higher (Figure 1(d)). The addition of 0.100 mol NaNO₃ or NH₄NO₃, however, yielded a mixture of o- and h-LaCO₃OH powders with almost equal quantity. Inorganic ions have been used to control the morphology of nanomaterials.^{26,27} The effect of salts on the phase has also been reported in the synthesis of nanostructured orthorhombic and hexagonal EuF₃ from a reaction of Eu(NO₃)₃·6H₂O with XF (X = H⁺, NH₄⁺, and alkali ions).²⁷

In a mixed solvent containing 80 volume % EG, doping LaCO₃OH with 2 mol % Ln^{3+} (Ln = Ce and Eu) into LaCO₃OH yielded *h*-LaCO₃OH:Ln³⁺, but the doping with 2 mol % Tb³⁺ and Ho³⁺ ions yielded *h*-LaCO₃OH:Tb³⁺ mixed with a very small amount of o-LaCO₃OH:Tb³⁺ and o-LaCO₃OH:Ho³⁺ mixed with a smaller amount of h-LaCO₃OH:Ho³⁺, respectively. This suggests that doping with Ln³⁺ ion having smaller ionic radius is more effective in inducing the formation of o-LaCO₃OH. This doping effect on the polymorph can be explained in terms of the phase diagrams for La₂O₃-H₂O-CO₂ ternary systems for the lanthanide series, which were established by Kutty et al.²⁸ Based on the phase diagrams, they showed that the stable polymorph of LaCO₃OH is orthorhombic for elements with atomic number 64 and higher. On the other hand, doping LaCO₃OH with 2 mol % Ln³⁺ ions in aqueous solution containing KNO₃ resulted in pure *o*-LaCO₃OH:Ln³⁺, regardless of the presence of Ln³⁺ ions.

Characterization of LaCO₃OH Powders. The *h*- and *o*-LaCO₃OH powders, which were obtained in a mixed solvent containing 80 volume % EG and aqueous solution containing KNO₃, respectively, were characterized by TG, IR spectroscopy, and SEM. Figure 2 shows the TG and DTA curves of the LaCO₃OH powders. The TG curves indicated the following decomposition processes:

$$LaCO_{3}OH \cdot xH_{2}O \rightarrow LaCO_{3}OH$$
(1)

$$2 \text{ LaCO}_3\text{OH} \rightarrow \text{La}_2\text{O}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$$
(2)

$$La_2O_2CO_3 \rightarrow La_2O_3 + CO_2 \tag{3}$$

The observed weight losses accompanied by the decomposition of *h*- and *o*-LaCO₃OH·xH₂O to La₂O₃ were 28.9 and 26.1%. Therefore, the values of x for *h*- and *o*-LaCO₃OH·xH₂O were estimated to be 0.73 and 0.25, respectively. The first weight loss in the temperature range from room temperature to *ca*. 400 °C was assigned to the loss of adsorbed water (xH₂O), as expressed in equation (1). The abrupt weight losses above *ca*. 400 °C and 700 °C were attributed to reactions (2) and (3), respectively. The theore-

Figure 2. TG (solid line) and DTA (dotted line) curves of (a) *h*-and (b) *o*-LaCO₃OH powders.

tical weight loss accompanied by reactions (2) and (3) is 15.0% and 11.9%, which were similar to 14.6% and 11.3% observed for *o*-LaCO₃OH, respectively. A comparison of slopes in the temperature range from 500 to 700 °C indicated that the rate of the LaCO₃OH to La₂O₂CO₃ transformation is much slower for *h*- than *o*-LaCO₃OH. DTA curves showed that reactions (2) and (3) were endothermic. In addition, the endothermic peak for reaction (2) appeared at higher

Figure 3. IR spectra of (a) *o*-LaCO₃OH, (b) *o*-LaCO₃OD, and (c) *h*-LaCO₃OH powders.

temperature for o-LaCO₃OH than for h-LaCO₃OH, whereas the opposite was observed for reaction (3).

Figure 3 shows IR spectra of the h- and o-LaCO₃OH powders. The IR spectrum (Figure 3(a)) of the o-LaCO₃OH powder was similar to those of o-LaCO₃OH powders obtained by boiling aqueous solution containing La(NO₃)₃ and urea³ and by a reaction of LaBrOH with CO_2^9 but different from that of an o-LaCO₃OH powder prepared in an autoclave.¹⁷ The OH-stretching band appeared at 3443 cm⁻¹ for o-LaCO₃OH and at 3617 and 3484 cm⁻¹ for *h*-LaCO₃OH. In many reports, the two bands for h-LaCO₃OH were assigned to structural OH and adsorbed H₂O,^{11,14,16,18} but they can both be assigned to the stretching bands of two nonequivalent structural OH groups.⁹ The very broad band centered at ca. 3300 cm⁻¹ in Figure 3(c) was ascribed to the OHstretching of adsorbed H₂O because the IR spectrum measured after drying at 200 °C for 2 days showed that the stretching bands of two structural OH groups were invariant and the very broad band centered at $ca. 3300 \text{ cm}^{-1}$ almost disappeared. The bands below 1500 cm⁻¹ in Figure 3 were assigned to the vibrational modes of coordinated CO_3^{2-} ion. Four normal modes of free CO₃²⁻ ion appear at 1063 cm⁻¹ (v_1) , 879 cm⁻¹ (v_2) , 1415 cm⁻¹ (v_3) , and 680 cm⁻¹ (v_4) .²⁹ Lowering of symmetry from D_{3h} to C_{2v} or C_s by coordination causes the presence of an IR-inactive v_1 mode and splitting of the degenerate v_3 and v_4 modes.³⁰ As shown in Figure 3(a), v_3 and v_4 modes were split into two peaks (1478 and 1407 cm⁻¹, 723 and 694 cm⁻¹, respectively) and v_1 mode was observed at 1074 cm⁻¹ for o-LaCO₃OH. The peak at 856 cm^{-1} was attributed to the v₂ mode. The peak at 795 cm^{-1} was assigned to the deformation vibration of CO_3^{2-} ion rather than some vibration of structural OH.¹¹ This assignment is based on a comparison in the IR spectra (Figures 3(a) and 3(b)) between the o-LaCO₃OH and o-LaCO₃OD powders. The latter powder was prepared using D₂O (99.9 atom% D, Sigma-Aldrich) instead of H2O as a solvent. The structural OD-stretching band appeared at 2542 cm⁻¹ in Figure 3(b). Assuming that the force constant is the same in structural OH and OD groups, the structural OD-stretching frequency was estimated to be 2512 cm⁻¹, which is close to that observed. Except the structural OD-stretching band, each peak in Figure 3(b) appeared at almost the same position as the corresponding peak in Figure 3(a), showing that the peak at 795 cm⁻¹ is associated with deformation vibration of CO_3^{2-} ion. The IR spectrum (Figure 3(c)) of the h-LaCO₃OH powder was more complicated due to multiple splitting of all the modes. The multiple splitting can be interpreted in terms of nonequivalent carbonate groups.³⁰

The morphology of the *h*- and *o*-LaCO₃OH powders was observed by SEM. As shown in Figure 4, the *h*-LaCO₃OH particles were almost spherical with mean particle size of \sim 600 nm, whereas the *o*-LaCO₃OH particles were rhombic.³

Transformation of LaCO₃OH:Ln³⁺ to La₂O₂CO₃:Ln³⁺ and La₂O₃:Ln³⁺. As shown in Figure 2, LaCO₃OH decomposed to La₂O₃ through La₂O₂CO₃. Figure 5 shows XRD patterns of the powders obtained by calcination of *h*- and *o*-LaCO₃OH powders at 600 and 800 °C for 2 h. The calci-

Min-Ho Lee and Woo-Sik Jung

Figure 4. SEM images of (a) h- and (b) o-LaCO₃OH powders.

Figure 5. XRD patterns of samples obtained by calcination of (a) *o*- and (b) *h*-LaCO₃OH at 600 °C for 2 h and (c) by calcination of *o*-LaCO₃OH at 800 °C for 2 h.

nation of both powders at 600 °C gave the hexagonal (h-) La₂O₂CO₃ (JCPDS Card No. 37-0804), as in other studies.^{4,15} As shown in Figures 5(a) and 5(b), the h-La₂O₂CO₃ powder derived from o-LaCO₃OH exhibited narrower diffraction peaks than that from h-LaCO₃OH, due to the larger particle size. The XRD pattern (Figure 5(c)) of the powder obtained by calcination of o-LaCO₃OH at 800 °C was indexed to hexagonal (h-) La₂O₃ (JCPDS Card No. 05-0602), as for that of the powder obtained by calcination of h-LaCO₃OH at 800 °C.

The effect of dopants on the polymorph of $La_2O_2CO_3$ and La_2O_3 was examined with various dopants and concentrations. The calcination of *h*-LaCO₃OH:Ln³⁺ (2 mol %, Ln = Ce, Eu, and Tb) at 600 °C for 2 h yielded *h*-La₂O₂CO₃ powders. Their XRD patterns were the same as that (Figure 5(b)) of the powder obtained by calcination of *h*-LaCO₃OH. On the other hand, the polymorph of the La₂O₂CO₃ powders

Hydrothermal Synthesis of LaCO₃OH and Ln³⁺-doped LaCO₃OH

Figure 6. XRD patterns of samples obtained by calcination of *o*-LaCO₃OH:Ln³⁺ (2 mol %, Ln = Ce, Eu, Tb, and Ho) at 600 °C for 2 h.

obtained by calcination of *o*-LaCO₃OH:Ln³⁺ (2 mol %, Ln = Ce, Eu, Tb, and Ho) at 600 °C for 2 h depended on the dopants, as shown in Figure 6. Doping with 2 mol % Ce³⁺ ion resulted in pure *h*-La₂O₂CO₃, but an increase in the doping concentrations of Ce³⁺ ion caused the formation of monoclinic (*m*-) La₂O₂CO₃ (JCPDS Card No. 48-1113). Though not shown here, the calcination of *o*-LaCO₃OH:Ce³⁺ (10 mol %) at 600 °C produced pure *m*-La₂O₂CO₃. The pure *m*-La₂O₂CO₃ was also obtained by calcination of La(OH)₃ at 400 °C for 2 h.³² On the other hand, doping with Eu³⁺, Tb³⁺, and Ho³⁺ ions resulted in a mixture of *h*- and *m*-La₂O₂CO₃. The relative quantity of the latter phase increased with decreasing ionic radius of the Ln³⁺ ion.

The calcination of *o*-LaCO₃OH:Ln³⁺ (2 mol %, Ln = Ce, Eu, Tb, and Ho) at 800 °C for 2 h yielded *h*-La₂O₃ powders, irrespective of the species of Ln³⁺ ions. On the other hand, as shown in Figure 7, the calcination of *h*-LaCO₃OH:Ln³⁺ (Ln = Eu and Tb) at 800 °C yielded an *h*-La₂O₃ powder with a very small amount of cubic La₂O₃ (ICCD–PDF # 98-005-1138 and 98-006-9895).

Luminescence Properties of LaCO₃OH:Eu³⁺ and La₂O₂-CO₃:Eu³⁺ Powders. When acting as an emitting activator, the Eu³⁺ ion is an excellent structural probe because of high sensitivity of its luminescence spectra to changes in local

Figure 7. XRD patterns of samples obtained by calcination of h-LaCO₃OH:Ln³⁺ (2 mol %, Ln = Ce, Eu, and Tb) at 800 °C for 2 h.

symmetry. The effect of the polymorph on the luminescence spectra was examined for LaCO₃OH:Eu³⁺ (2 mol %) and La₂O₂CO₃:Eu³⁺ (2 mol %) powders. As shown in Figures 8(a-1) and 8(a-2), the emission spectra (at $\lambda_{ex} = 395.8$ nm) of

Figure 8. Emission spectra of (a-1) *h*- and (a-2) *o*-LaCO₃OH:Eu³⁺ (2 mol %) powders ($\lambda_{ex} = 395.8$ nm) and of samples obtained by calcination of (b-1) *h*- and (b-2) *o*-LaCO₃OH:Eu³⁺ (2 mol %) powders ($\lambda_{ex} = 280.4$ nm) at 600 °C for 2 h. The insets are their corresponding luminescence photographs at 254 nm UV lamp irradiation.

the *h*- and *o*-LaCO₃OH powders were considerably different in shape, suggesting that the local symmetry of the Eu³⁺ sites occupied in *h*- and *o*-LaCO₃OH are different. The spectrum (Figure 8(a-1)) of *h*-LaCO₃OH:Eu³⁺ showed two unresolved bands at *ca*. 590 and 618 nm, which were attributed to the ⁵D₀ \rightarrow ⁷F₁ and ⁵D₀ \rightarrow ⁷F₂ transitions, respectively. The appearance of the two unresolved bands indicated the presence of two Eu³⁺ sites with similar local symmetry in *h*-LaCO₃OH:Eu³⁺.

Figures 8(b-1) and (b-2) exhibit the emission spectra (at $\lambda_{ex} = 280.4$ nm) of La₂O₂CO₃:Eu³⁺ (2 mol %) powders obtained by calcination of *h*- and *o*-LaCO₃OH:Eu³⁺ (2 mol %) at 600 °C for 2 h. The emission bands were more intense for *o*-LaCO₃OH:Eu³⁺ than for *h*-LaCO₃OH:Eu³⁺, but both emission spectra had a similar shape. The similarity can be explained in terms of the polymorph, respectively. As discussed above, the sample derived from *h*-LaCO₃OH:Eu³⁺ was a pure *h*-La₂O₂CO₃ powder, whereas the sample derived from *o*-LaCO₃OH:Eu³⁺ was an *h*-La₂O₂CO₃ powder with a small amount of *m*-La₂O₂CO₃. As shown in the insets, the lumine-scence of four phosphors in Figures 8(a-1), 8(a-2), 8(b-1) and 8(b-2) were strong red, dark red, red, and vivid yellow-red to the naked eye, respectively, at 254 nm UV lamp irradiation.

Conclusions

The polymorph of LaCO₃OH prepared by a hydrothermal reaction depended on the reaction temperature, inorganic salt additive, species of Ln³⁺ dopant, and solvent. The calcination of o-LaCO₃OH:Ln³⁺ (2 mol %) powders at 600 °C yielded a mixture of *h*- and *m*-La₂O₂CO₃:Ln³⁺ powders. The relative quantity of the latter increased with decreasing ionic radius of the Ln^{3+} ion and increasing doping concentrations. On the other hand, the calcination of h-LaCO₃OH:Ln³⁺ (2 mol %) powders at 600 °C gave a pure h-La₂O₂CO₃:Ln³⁺ powder, irrespective of the species of Ln^{3+} ion (Ln = Ce, Eu, and Tb). The emission spectra of the *h*- and *o*-LaCO₃OH: Eu³⁺ were considerably different in shape, suggesting that the local symmetry of the Eu^{3+} sites occupied in *h*- and *o*-LaCO₃OH are different. The emission spectra of their thermal decomposition products at 600 °C had a similar shape due to the small difference in their polymorph.

Acknowledgments. This work was supported by the Energy Efficiency & Resources Program (No. 2011T100100081) and the Human Resources Development Program (No. 20124030200100) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry and Energy.

Min-Ho Lee and Woo-Sik Jung

References

- Gaines, R. V.; Skinner, H. C. W.; Foord, E. E.; Mason, B.; Rosenzweig, A. *Dana's New Mineralogy*, 8th ed, John Wiley & Sons: New York, 1997; Class 15 and 16.
- Shang, M.; Geng, D.; Kang, X.; Yang, D.; Zhang, Y.; Lin, J. *Inorg. Chem.* 2012, 51, 11106.
- Li, G.; Peng, C.; Zhang, C.; Xu, Z.; Shang, M.; Yang, D.; Kang, X.; Wang, W.; Li, C.; Cheng, Z.; Lin, J. *Inorg. Chem.* 2010, 49, 10522.
- Mao, G.; Zhang, H.; Li, H.; Jin, J.; Niu, S. J. Electrochem. Soc. 2012, 159, 148.
- Li, G.; Shang, M.; Geng, D.; Yang, D.; Peng, C.; Cheng, Z.; Lin, J. *CrystEngComm* 2012, 14, 2100.
- Loitongbam, R. S.; Singh, N. S.; Singh, W. R.; Ningthoujam, R. S. J. Lumin. 2013, 134, 14.
- 7. Wakita, H.; Kinoshita, S. Bull. Chem. Soc. Jpn. 1979, 52, 428.
- 8. Haschke, J. M. J. Solid Chem. 1975, 12, 115.
- 9. Sun, J.; Kyotani, T.; Tomita, A. J. Solid Chem. 1986, 65, 94.
- Li, Z.; Zhang, J.; Du, J.; Gao, H.; Gao, Y.; Mu, T.; Han, B. *Mater:* Lett. 2005, 59, 963.
- Pol, V. G.; Thiyagarajan, P.; Moreno, J. M. C.; Popa, M. Inorg. Chem. 2009, 48, 6417.
- 12. Han, Z.; Xu, P.; Ratinac, K. R.; Lu, G. Q. J. Cryst. Growth 2004, 273, 248.
- 13. Han, Z.; Yang, Q.; Lu, G. Q. J. Solid Chem. 2004, 177, 3709.
- Zhang, Y.; Han, K.; Cheng, T.; Fang, Z. Inorg. Chem. 2007, 46, 4713.
- Sun, C.; Xiao, G; Li, H.; Chen, L. J. Am. Ceram. Soc. 2007, 90, 2576.
- Xie, J.; Wu, Q.; Zhang, D.; Ding, Y. Cryst. Growth Des. 2009, 9, 3889.
- Zhong, S.-L.; Zhang, L.-F.; Jiang, J.-W.; Lv, Y.-H.; Xu, R.; Xu, A.-W.; Wang, S.-P. *CrystEngComm* **2011**, *13*, 4151-4160.
- 18. Nguyen, T.-D.; Dinh, C.-T.; Do, T.-O. Inorg. Chem. 2011, 50, 1309.
- Yang, X.; Zhai, Z.; Xu, L.; Li, M.; Zhang, Y.; Hou, W. RSC Adv. 2013, 3, 3907.
- 20. Ali, A. A.; Hasan, M. A.; Zaki, M. I. *Mater. Res. Bull.* 2008, 43, 16.
- 21. Akinc, M.; Sordelet, D. Adv. Ceram. Mater. 1989, 2, 232.
- 22. Woo, D. C.; Lee, M.-H.; Jung, W.-S. Ceram. Int. 2013, 39, 1533.
- 23. Mattijeviæ, E. Pure Appl. Chem. 1988, 60, 1479.
- 24. Qi, R.-J.; Zhu, Y.-J. J. Phys. Chem. B 2006, 110, 8302.
- Ma, M.-G.; Zhu, Y.-J.; Chang, J. J. Phys. Chem. B 2006, 110, 14226.
- Xia, T.; Li, Q.; Liu, X.; Meng, J.; Cao, X. Q. J. Phys. Chem. B 2006, 110, 2006.
- 27. Wang, M.; Huang, Q.-L.; Hong, J.-M.; Chen, X.-T.; Xue, Z.-L. *Cryst. Growth Des.* **2006**, *6*, 2169.
- Kutty, T. R. N.; Tareen, J. A. K.; Mohammed, I. J. Less-Common Met. 1985, 105, 197.
- Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Co., New York, 1945; p 178.
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; John Wiley & Sons: 1978; p 93.
- 31. Turcotte, R. P.; Sawyer, J. O.; Eyring, L. Inorg. Chem. 1969, 8, 238.
- 32. Mu, Q.; Wang, Y. J. Alloys Compd. 2011, 509, 396.