• Title/Summary/Keyword: Ion-incident Angle

Search Result 38, Processing Time 0.025 seconds

Sputtering of traget materials by the ion scattering monte carlo calculation (이온 산란 몬테칼로 계산에 의한 시료 물질의 스퍼터링)

  • 김영삼;이상석;김영권;최은하;조광섭
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1999
  • Monte Carlo ion scattering program is improved with the single scattering methods where the total cross section and the mean free path are calculated as a function of atomic density during ion scattering in matter. The relations among the parameters of incident ions and substrate materials are investigated to the sputtering phenomena. The sputtering yield has been analyzed with the dependence on the incident ion species and energy, incident angle, and surface binding energy. The energy distribution of sputtered particles is discussed.

  • PDF

The effect of Ion Beam modification of Polyimide surface on alignment properties of liquid crystals

  • Cho, Seong-Jin;Kim, Chan-Soo;Roh, Jin-A;Gwag, Jin-Seog;Kim, Jae-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.107-112
    • /
    • 2003
  • The alignment effect of liquid crystals on Polyimide surfaces bombarded by a low energy argon ion beam and the effect of pretilt angle on viewing characteristics of an LCD cell are discussed. The unidirectional out-of-plane liquid crystal tilt angle is varied with various ion beam irradiation conditions, such as the energy of the incident ions, the angle of incidence and exposure time. As low pretilt angle is profitable for wider viewing property, LCD cell with ion beam modified Polyimide layer show wider viewing characteristics.

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Basic Properties of Cell Fabricated by Ion-beam Treatment for In-plane Switching LCD

  • Seo, Joo-Hong;Lee, Sung-Pil;Yoon, Tae-Hoon;Kim, Jae-Chang
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2006
  • We investigated the horizontal alignment properties such as surface morphology, pretilt angle, and polar and azimuthal anchoring energy of organic alignment material-coated surface treated by ion beam. In this investigation the energy and incident angle of ion beam were changed. We also fabricated an in-plane switching (IPS) cell by ion beam alignment. The results showed similar voltage-transmittance characteristics to those of a rubbed cell and better dark state.

Fabrication and Characterization of Step-Edge Josephson Junctions on R-plane Al$_2O_3$ Substrates (R-면 사파이어 기판 위에 제작된 계단형 모서리 조셉슨 접합의 특성)

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.147-151
    • /
    • 1999
  • YBCO step-edge Josephson junction were fabricated on sapphire substrates. The steps were formed on R-plane sapphire substrates by using Ar ion milling with PR masks. The step angle was controlled in the wide range from 25$^{\circ}$ to 50$^{\circ}$ by adjusting both the Ar ion incident angle and the photoresist mask rotation angle relative to the incident Ar ion beam. CeO$_2$ buffer layer and in-situ YBa$_2Cu_3O_{7-{\delta}}$ (YBCO) thin films was deposited on the stepped R-plane sapphire substrates by pulsed laser deposition method. The YBCO film thickness was varied to obtain the ratio of film thickness to step height in the range from 0.5 to 1. The step edge junction exhibited RSJ-like behaviors with I$_cR_n$ product of 100 ${\sim}$ 300 ${\mu}$V, critical current density of 10$^3$ ${\sim}$ 10$^5$ A/ cm$^2$ at 77 K.

  • PDF

Alignment of Nematic Liquid Crystals on Polyimide Surface Bombarded by $Ar^+$ Beam

  • Gwag, Jin-Seog;Lee, Seo-Hern;Park, Kyoung-Ho;Park, Won-Sang;Han, Kwan-Yougn;Yoon, Tae-Hoon;Kim, Jae-Chang;Kim, Hee;Cho, Seong-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.409-412
    • /
    • 2002
  • We found that polyimide surfaces bombarded by a low energy argon ion beam align liquid crystals. The pretilt angle of the liquid crystals is controlled by ion beam parameters, such as the energy of the incident ions, the angle of incidence, exposure time and current density. The alignment direction of liquid crystal on substrates corresponded to ion beam direction. By argon ion beam the pretilt angle of the liquid crystals was controlled between $0.5^{\circ}$ and $4^{\circ}$for SE-3140 under the proper conditons. By the atomic force microscope (AFM), polyimide surfaces before and after bombarded by ion beam are compared.

  • PDF

Vertical Alignment of Nematic Liquid Crystal on the SiC Thin Film Layer with Ion-beam Irradiation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.301-304
    • /
    • 2006
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of the SiC (Silicon Carbide) thin film. The SiC thin film exhibits good chemical and thermal stability. The good thermal and chemical stability make SiC an attractive candidate for electronic applications. A vertical alignment of nematic liquid crystal by atomic beam exposure on the SiC thin film surface was achieved. The about $87^{\circ}$ of stable pretilt angle was achieved at the range from $30^{\circ}\;to\;45^{\circ}$ of incident angle. Consequently, the vertical alignment effect of liquid crystal electro-optical characteristic by the atomic beam alignment method on the SiC thin film layer can be achieved.

Liquid Crystal Alignment on the SiC Thin Film by the Ion Beam Exposure Method

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Kim, Young-Hwan;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.22-24
    • /
    • 2005
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of the SiC (Silicon Carbide) thin film. The SiC thin film exhibits good chemical and thermal stability. The good thermal and chemical stability makes SiC an attractive candidate for electronic applications. A vertical alignment of nematic liquid crystal by ion beam exposure on the SiC thin film surface was achieved. The about $87{\circ}$ of stable pretilt angle was achieved at the range from $30{\circ}$ to $45{\circ}$ of incident angle. The good LC alignment is maintained by the ion beam alignment method on the SiC thin film surface at high annealing temperatures up to $300{\circ}C$.

Liquid Crystal Alignment on the SiC Thin Film by the Ion Beam Exposure Method (SiC 박막에 이온빔 배향을 이용한 틸트 발생에 관한 연구)

  • Kang, Hyung-Ku;Kang, Hee-Jin;Hwang, Jeoung-Yeon;Lee, Whee-Won;Bae, Yu-Han;Moon, Hyun-Chan;Kim, Young-Hwan;Seo, Dae-Shik;Lim, Sung-Hoon;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.489-490
    • /
    • 2005
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of the SiC (Silicon Carbide) thin film. The SiC thin film exhibits good chemical and thermal stability. The good thermal and chemical stability makes SiC an attractive candidate for electronic applications. A vertical alignment of nematic liquid crystal by ion beam exposure on the SiC thin film surface was achieved. The about $87^{\circ}$ of stable pretilt angle was achieved at the range from $30^{\circ}$ to $45^{\circ}$ of incident angle. The good LC alignment is main-tained by the ion beam alignment method on the SiC thin film surface at high annealing temperatures up to 300.

  • PDF

SiNx 무기 박막의 수직액정 배향 능력

  • Kim, Byeong-Yong;Kim, Yeong-Hwan;Park, Hong-Gyu;O, Byeong-Yun;Ok, Cheol-Ho;Han, Jeong-Min;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.185-185
    • /
    • 2009
  • The aligned liquid crystals (LCs) display on SiNx thin films using ion-beam (IB) irradiation was studied with controllability ofpretilt angle depending on incident energies of the IB. Plasma-enhanced chemical vapor deposition (PECVD) was used to orient the LCs on SiNx alignment films. The LCs alignment property for the SiNx thin films were observed to verify the practical application potential (figure1). A good LCs alignment of vertical alignment LCs cells on SiNx thin film surfaces irradiated with incident IB energy of 1800eV was achieved. Also, a good LC alignment by the IB irradiation on the SiNx thin film surface was observed at an annealing temperature of $180^{\circ}C$. However, the alignment defects of the nematic liquid crystal was observed at an annealing temperature above $230^{\circ}C$. The atomic force microscopy (AFM) images of LCs on SiNx thin film surfaces irradiated with IB energy was used for the surface analysis.

  • PDF