• Title/Summary/Keyword: Ion-exchange membrane

Search Result 466, Processing Time 0.026 seconds

A High Efficiency Electrolytic Cell by Superposing Pulsed Corona Discharge in Water (수중 펄스코로나 방전을 중첩한 고효율 강전해수 발생장치)

  • 이재용;김진규;정성진;박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • A conventional electrolyzing cell has been made by an ion exchange membrane inbetween parallel plate electrodes. A low dc voltage is applied to the electrodes for electrolyzing and the efficiency is remained in low. in this study, a novel electrolyzing cell with a pair of slit-type third electrodes installed inbetween parallel plate electrodes has been proposed and investigated experimentally. And pulse power wa supplied to between each electrodes. This slit type of third electrodes can concentrate the strong electric fields at the every its edges to accelerate the electrolyzing powers, and to generate oxygen bubble discharges for generating oxidants. And moreover the slits eliminate the space charge limiting action and the temperature of the water by leaking out through the slits from electrolyzing region to outside of the main electrode region. As a result, it was found that a strong electorzed water of pH 2.8 and pH 10.5 and oxidants dissolved water of 1 [ppm] in acidic water were obtained with a tap water fed at the electric current of 2 [A], which however were several times higher oxidant and ion concentration quantity compared with the conventional cell.

  • PDF

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC (산화안정성 향상을 위한 고분자연료전지용 탄화수소복합막의 제조 및 특성연구)

  • Lee, Hyejin;Choi, Young-Woo;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.44-48
    • /
    • 2014
  • Sulfonated poly(arylene ether sulfone)-cerium composite membranes with improved oxidative stability were prepared for proton exchange membrane fuel cell application. Oxidative stability of the composite membranes changed depending on the amount of incorporated metal. Their water uptake, IEC and proton conductivity were also affected. ICP analysis confirmed trace of cerium ion in the composite membranes and $^1H$-NMR indicated successful coordination of sulfonic acid groups with the metal ions. Increasing amount of the cerium ion resulted in decrease in proton conductivities and water uptake, but enhanced oxidative stabilities. A hydrogen peroxide exposure equipment was used for the test of oxidative stability of the composite membranes, which enabled to mimic fuel cell operating condition compared with conventional Fenton's test.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Sulfonated Perfluorocyclobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells (연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막)

  • Yoo Min-Chul;Chang Bong-Jin;Kim Jeong-Hoon;Lee Soo-Bok;Lee Yong-Taek
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.355-362
    • /
    • 2005
  • A PFCB-containing biphenylene ether polymer was synthesized and sulfonated using chlorosulfonic acid and then cast into membranes from their solutions for fuel cell applications. Sulfonation reactions were carried out by changing the molar ratio of chlorosulfonic acid and the PFCB-containing biphenylene ether polymer under fixed time and temperature. The resulting sulfonated polymers showed different sulfonation degree (SD), ion exchange capacity (IEC), and water uptake. With the increment of the content of chlorosulfonic acid, the SD, IEC, water uptake of the sulfonated polymer membranes increased. The ion conductivity of the sulfonated PFCB-containing biphenylene ether polymers was compared with that of Nafion 115.

Gas Permeation Properties of Aminated Polyphenylene Oxide Membranes (아민화된 폴리페닐렌 옥사이드막에 의한 기체 투과 특성에 관한 연구)

  • Shin, Do Hyoung;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.488-495
    • /
    • 2015
  • Aminated polyphenylene oxide (APPO) based on polyphenylene oxide (PPO) was synthesized using trimethylamine and chloromethyl ethyl ether. Then, the electro-physical properties of APPO membranes which were prepared from the 8 wt% APPO solution dissolved in chloroform were characterized. Contact angle was $44.4^{\circ}$, swelling degree was 37.9%. The typical electrical properties of ion exchange capacity and ion conductivity were 2.3 meq/g, 0.027 S/cm, respectively. And the single gas permeation experiments were performed by using the time-lag method for $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$. For the acid gases of $CO_2$ and $SO_2$, their permeability were measured 20.7 and 511.5 barrers, respectively. In the case of selectivity, $CO_2/CH_4$, $CO_2/N_2$ and $SO_2/CO_2$ were measured 39.8, 42.2, 24.7, respectively.

Salt Effect of Metal Ion Substituted Membranes for Water-Alcohol Systems Using Pervaporation Processes (투과증발공정을 이용한 물-알코올계에 대한 금속이온이 치환된 이온교환막의 염효과 연구)

  • 임지원;전지현
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2001
  • The hydorgen ions in PVA/SSA membranes were substituted with monovalent metal ions, $Li^{+}$, $Na^{+}$, $K^{+}$, divalent metal ion forms, $Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$, trivalent metal ion forms, $Al^{+}$. The effect of exchange with metal ions was investigated through the swelling measurement and pervaporative experiments for water-ethanol and water-methanol mixtures at various operating conditions. In addition, ESCA analysis was carried out to study the substitution of the metal ions in membranes. The swelling ratio decerased in the sequence of $Li^{+}$, $Na^{+}$, $K^{+}$ and this might be due to the 'salting-out` effect while the swelling ratios for divalnet and trivalent ion-substituted membranes were affected by the combined effect of salting-out, electrostatic crosslinking and extent of metal ion substitution. For the pervaporation performance, PVA/SSA-$H^{+}$membrane showed the lowest flux and highest separation factor for all aqueous ethanol solutions. The typical results of the flux, 59 g/$m^{2}$hr and the separation factor, 44 were obtained at $50^{\circ}C$ for 90% ethanol aqueous mixture. For water-methanol solutions, the PVA/SSA membranes substituted with monovalent PVA/SSA membranes substituted with divalent and tribalent metal ions, both `salting-out` and electrostatic effects affected the pervaporative results.

  • PDF

Study on the Quality Improvement of Acidic Citrus Juices, Citrus natsudaidai and Citrus grandis, by Bipolar Membrane Electrodialysis (전기투석용 bipolar 막을 이용한 하밀감 및 당유자 주스의 품질개선에 관한 연구)

  • Yang, Min-Ho;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.630-636
    • /
    • 2007
  • Acidic citrus juices obtained from C. natsudaidai and C. grandis were electrodialyzed with bipolar and organic acid selective membrane (ion exchange membrane) cartridges. The pH levels of the acidic citrus juices gradually increased to 14.5% (C. grandis) and 25.2% (C. natsudaidai) by electrodialysis with the bipolar membranes, while levels remained consistent when organic acid selective membranes were applied. The total acidity levels decreased more with the organic selective membrane than with the bipolar membrane. Conductivity rose with the bipolar membranes while the value continued to fall rapidly with the organic selective membranes. Sugar and flavonoid contents remained relatively unchanged, without any significant differences before and after electrodialysis with each membrane. Also, ion contents were almost unchanged with the bipolar membranes and the electrolyte, $K_2SO_4$, as compared to rapid changes in sodium and potassium levels with the organic selective membranes and the electrolyte, $K_2SO_4$. In summary, the use of bipolar membranes provided juice with better sensory quality than that of the organic acid selective membranes.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

Scalants removal from synthetic RO brine using natural zeolite (막증류 공정의 전처리 공정으로서 천연 제올라이트 컬럼 적용)

  • Jeong, Seongpil;Chung, Hayoon;Yoon, Teakgeun;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • Membrane distillation (MD) is the thermally driven water separation process based on the vapor pressure difference across the membrane. In order to increase the water recovery of the conventional RO process, the additional MD-PRO pocess was suggested. In this study, the syntheric RO brine was used as a feed solution of the MD process. Due to the high salinity of the RO brine, the MD membrane could be fouled by the scalants. In order to mitigate the scaling on the MD membrane surface, the pre-treatment process using the column filled by natural zeolite was applied. The roughing filter was installed between the pre-treatment process and MD system in order to prevent possible particulate fouling by the debries of the natural zeolite. Moreover, in order to enhance the CEC of the natural zeolite, the NaCl soaking was conducted. The flux and electronic conductivity were monitored under given experimental conditions. And the membrane morphology and the chemical compositions were analyzed by using the SEM-EDX.