Browse > Article
http://dx.doi.org/10.7316/KHNES.2016.27.6.660

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes  

KIM, AERHAN (R&D Center for CANUTECH, Business Incubation Center of Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.27, no.6, 2016 , pp. 660-669 More about this Journal
Abstract
A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.
Keywords
PEMFC; Polymer electrolyte membranes; Block copolymer; Thermal analysis; Ion conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Vielstich, A. Lamm, H. A. Gasteiger, "Handbook of fuel cells", Wiley, 2003.
2 V. Ramani, H. R. Kunz, J. M. Fenton, "Investigation of Nafion/HPA composite membrnaes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 2004, p. 31-44.   DOI
3 D. J. Connollym, W. F. Gresham, US Patent 3 282 875, 1966.
4 C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1996, p. 1-33.   DOI
5 Q. Li, R. He, Q. O. Jensen, N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater, 15, 2003, p. 4896-4915.   DOI
6 K. A. Mauritz, R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 2004, p. 4535-4586.   DOI
7 M. Rikukawa, K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 2000, p. 1463-1502.   DOI
8 J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 2001, p. 3-27.   DOI
9 S, Mochizuki, A. L. Zydney, "Theoretical analysis of pore size distribution effects on membrane transport", J. Membr. Sci., 82(3), 1993, p. 211-228.   DOI
10 F. Schonberger, M. Hein, J. Kerres, "Preparation and characterisation of sulfonated partially fluorinated statistical poly(arylene ether sulfone)s and their blends with PBI", Solid State Ionics, 178, 2007, p. 547-554.   DOI
11 B. Smitha, S. Sridhar, A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review", J. Membr. Sci., 259, 2005, p. 10-26.   DOI
12 J. Wootthikanokkhan, N. Seeponkai, "Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends", J. Appl. Polym. Sci., 102, 2006, p. 5941-5947.   DOI
13 M. Rikukawa, K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Polym. Sci., 25, 2000, p. 1463-1502.
14 N. Y. Arnett, W. L. Harrison, A. S. B. Adami, A. Roy, O. Lane, F. Cromer, L. Dong, J. E. McGrath, "Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells", J. Power Sources, 172, 2007, p. 20-29.   DOI
15 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar and K. S. Nahm, "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenylmoiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., 60, 2011, p. 80-92.
16 A. R. Kim, M. Vinothkannan. D. J. Yoo, "Sulfonatedfluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", Int. J. Hydrogen Energy, in press, DOI 10.1016/j.ijhydene.2016.11.161   DOI
17 K. B. Wiles, C. M. de Diego, J. Abajo, J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane - electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 2007, p. 22-29.   DOI
18 A. S. Badami , O. Lane , H. S. Lee, A. Roy, J. E. McGrath, "Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic -hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells". J. Membr. Sci., 333, 2009, 1-11.   DOI
19 D. S. Kim , Y. S. Kim , M. D. Guiver, J. Ding, B. S. Pivovar, "Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance", J. Power Sources, 182, 2008, p. 100-105.   DOI
20 P. Erno, "Structure determination of organic compounds: Tables of spectral data", E. Pretsch, P. Buhlmann, C. Affolter, 3rd completely revised and enlarged English edition, Springer, Berlin, 2000, p. 245-312.
21 Y. Chikasige, Y. Chikyu, K. Miyatake, M. Watanabe, "Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications", Macromolecules, 38, 2005, p. 7121-7126.   DOI
22 G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, R. Elizabeth, "High ion and lower molecualr transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", J. Power Sources, 195, 2010, p. 5922-5928.   DOI
23 R. W. Kopitzke, C. A. Linkous, H. R. Anderson, G. L. Nelson, "Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes", J. Electrochem. Soc., 147, 2000, p. 1677-1681.   DOI