Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.488

Gas Permeation Properties of Aminated Polyphenylene Oxide Membranes  

Shin, Do Hyoung (Department of Advanced Materials and Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Membrane Journal / v.25, no.6, 2015 , pp. 488-495 More about this Journal
Abstract
Aminated polyphenylene oxide (APPO) based on polyphenylene oxide (PPO) was synthesized using trimethylamine and chloromethyl ethyl ether. Then, the electro-physical properties of APPO membranes which were prepared from the 8 wt% APPO solution dissolved in chloroform were characterized. Contact angle was $44.4^{\circ}$, swelling degree was 37.9%. The typical electrical properties of ion exchange capacity and ion conductivity were 2.3 meq/g, 0.027 S/cm, respectively. And the single gas permeation experiments were performed by using the time-lag method for $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$. For the acid gases of $CO_2$ and $SO_2$, their permeability were measured 20.7 and 511.5 barrers, respectively. In the case of selectivity, $CO_2/CH_4$, $CO_2/N_2$ and $SO_2/CO_2$ were measured 39.8, 42.2, 24.7, respectively.
Keywords
gas permeation; aminated polyphenylene oxide; facilitated transport; permeability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. T. Ward and W. L. Robb, "Carbon dioxide-oxygen separation: Facilitated transport of carbon dioxide across a liquid film", Science, 156, 1481-1484 (1967).   DOI
2 C. Zhang, Z. Wang, Y. Cai, C. Yi, D. Yang, and S. Yuan, "Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure", Chem. Eng. J., 225, 744-751 (2013).   DOI
3 K. Huang, X. M. Zhang, Y. X. Li, Y. T. Wu, and X. B. Hu, "Facilitated separation of $CO_2$ and $SO_2$ through supported liquid membranes using carboxylate-based ionic liquids", J. Membr. Sci., 471, 227-236 (2014).   DOI
4 H. Matsuyama, A. Terada, T. Nakagawa, Y. Kiramura, and M. Teramoto, "Facilitated transport of $CO_2$ through polyethylenimine/poly(vinyl alcohol) blend membrane", J. Membr. Sci., 163, 221-227 (1999).   DOI
5 H. Matsuyama, M. Teramoto, and K. Iwai, "Development of a new functional cation-exchange membrane and its application to facilitated transport of $CO_2$", J. Membr. Sci., 93, 237-244 (1994).   DOI
6 D. N. Richard, "Analysis of facilitated transport with fixed site carrier membranes", J. Membr. Sci., 50, 207-214 (1990).   DOI
7 D. N. Richard, "Facilitated transport mechanism in fixed site carrier membranes", J. Membr. Sci., 60, 297-306 (1991).   DOI
8 D. N. Richard, "Analysis of ion transport with fixed site carrier membranes", J. Membr. Sci., 56, 229-234 (1991).   DOI
9 L. H. Bao and M. C. Trachtenberg, "Facilitated transport of $CO_2$ across a liquid membrane: comparing enzyme, amine, and alkaline", J. Membr. Sci., 280, 330-334 (2006).   DOI
10 L. Y. Deng, T. J. Kim, and M. B. Hagg, "Facilitated transport of $CO_2$ in novel PVAm/PVA blend membrane", J. Membr. Sci., 340, 154-163 (2009).   DOI
11 E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, "$CO_2$ capture by a task-specific ionic liquid", J. Am. Chem. Soc., 124, 926-927 (2002).   DOI
12 S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Amino acid ionic liquid-based facilitated transport membranes for $CO_2$ separation", Chem. Commun. (Camb.), 48, 6903-6905 (2012).   DOI
13 J. M. Zhang, S. J. Zhang, K. Dong, Y. Q. Zhang, Y. Q. Shen, and X. M. Lv, "Supported absorption of $CO_2$ by tetrabutylphosphonium amino acid ionic liquids", Chem. Eur. J., 12, 4021-4026 (2006).   DOI
14 B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider, and J. F. Brennecke, "Eqimolar $CO_2$ absorption by anion-functionalized ionic liquids", J. Am. Chem. Soc., 132, 2116-2117 (2010).   DOI
15 S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, and M. Goto, "$CO_2$ separation facilitated by task-specific ionic liquids using a supported liquid membrane", J. Membr. Sci., 314, 1-4 (2008).   DOI
16 S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Effect of water in ionic liquids on $CO_2$ permeability in amino acid ionic liquid-based facilitated transport membranes", J. Membr. Sci., 415-416, 168-175 (2012).   DOI
17 S. Kasahara, E. Kamio, and H. Matsuyama, "Improvements in the $CO_2$ permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties", J. Membr. Sci., 454, 155-162 (2014).   DOI
18 S. B. Hamouda, Q. T. Nguyen, D. Langevin, and S. Roudesli, "Poly(vinylalcohol)/ poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and $CO_2$ facilitated transport", C. R. Acad. Sci. IIc: Chim., 13, 372-379 (2010).
19 G. J. Francisco, A. Chakma, and X. Feng, "Separation of carbon dioxide from nitrogen using diethanol-amine-impregnated poly(vinyl alcohol) membranes", Sep. Purif. Technol., 71, 205 (2010).   DOI
20 Y. Zhang, Z. Wang, and S. C. Wang, "Selective permeation of $CO_2$ through new facilitated transport membranes", Desalination, 145, 385 (2002).   DOI
21 J. Zou and W. S. Winston Ho, "$CO_2$-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol)", J. Membr. Sci., 286, 310 (2006).   DOI
22 G. J. Francisco, A. Chakma, and X. Feng, "Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for $CO_2/N_2$ separation", J. Membr. Sci., 303, 54 (2007).   DOI
23 S. Shishatskiy, J. R. Pauls, S. P. Nunes, and K. V. Peinemann, "Quaternary ammonium membrane materials for $CO_2$ separation", J. Membr. Sci., 359, 44 (2010).   DOI
24 A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for $CO_2$ separation", J. Membr. Sci., 359, 115 (2010).   DOI
25 D. Y. Oh and S. Y. Nam, "Developmental trend of Polyimide membranes for gas separation", Membr. J., 21, 307 (2011).
26 J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of Polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014).   DOI
27 S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_2/N_2 $ permeation properties", Membr. J., 21, 62 (2011).
28 I. Cabasso, J. J. Grodzinski, and D. Vofsi, "Synthesis and characterization of polymers with pendant phosphonate groups", J. Appl. Polym. Sci., 18, 1969-1986 (1974).   DOI
29 R. T. Chern, F. R. Sheu, L. Jia, V. T. Stannet, and H. B. Hopfenberg, "Transport of Gases in unmodified and aryl-brominated 2,6-dimethyl-1,4-poly(phenylene oxide)", J. Membr. Sci., 35, 103-115 (1987).   DOI
30 H. Cong, X. Hu, M. Radosz, and Y. Shen, "Brominated poly(2,6-dimethyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation", Ind. Eng. Chem. Res., 46, 2567-2575 (1974).
31 L. Verdet and J. K. Stille, "Poly(phenylene oxide) catalyst supports containing (cyclopentadiene)metal complexes", organometallics, 1, 380-384 (1982).   DOI
32 G. Perego, A. Roggero, R. Sisto, and C. Valentini, "Membranes for gas separation based on silylated polyphenylene oxide", J. Membr. Sci., 55, 325-331 (1991).   DOI
33 C. Bonfanti, L. Lanzini, A. Roggero, and R. Sisto, "Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) by bromination-alkynylation", J. Polym. Sci. A. Polym. Chem., 32, 1361-1369 (1994).   DOI
34 S. Percec, "Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) by Friedel-Craft's reactions", J. Appl. Polym. Sci., 33, 191-203 (1987).   DOI
35 A. J. Chalk and A. S. Hay, "The direct metalation of poly(2,6-dimethyl-1,4-phenylene Ether), J. Polym. Sci. A. Polym. Chem., 7, 691-705 (1969).   DOI
36 A. Assogna, G. Perego, A. Roggero, R. Sisto, and C. Valentini, "Structure and gas permeability of silylated polyphenylene oxide", J, Membr. Sci., 71, 97-103 (1992).   DOI
37 C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617-7626 (2005).   DOI
38 S. D. Hong, M. Y. Ha, and S. Balachandar, "Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation", J. Colloid Interface Sci., 339, 187-195 (2009).   DOI
39 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. Mcgrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231-242 (2002).   DOI
40 J. H. Hong, D. Li, and H. Wang, "Weak-base anion exchange membranes by amination of chlorinated polypropylene with polyethyleneimine at low temperatures", J. Membr. Sci., 4, 318-441 (2008).
41 M. Soltanieh and W. N. Gill, "Review of reverse osmosis membranes and transport models", Chem. Eng. Commun., 12, 279-363 (1981).   DOI